BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 17048013)

  • 1. An indoor mesocosm system to study the effect of climate change on the late winter and spring succession of Baltic Sea phyto- and zooplankton.
    Sommer U; Aberle N; Engel A; Hansen T; Lengfellner K; Sandow M; Wohlers J; Zöllner E; Riebesell U
    Oecologia; 2007 Jan; 150(4):655-67. PubMed ID: 17048013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warming.
    Aberle N; Lengfellner K; Sommer U
    Oecologia; 2007 Jan; 150(4):668-81. PubMed ID: 16964503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate impact on plankton ecosystems in the Northeast Atlantic.
    Richardson AJ; Schoeman DS
    Science; 2004 Sep; 305(5690):1609-12. PubMed ID: 15361622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management.
    He H; Jin H; Jeppesen E; Li K; Liu Z; Zhang Y
    Water Res; 2018 Nov; 144():304-311. PubMed ID: 30071399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of mesozooplankton on phytoplankton nutrient limitation: a mesocosm study with northeast Atlantic plankton.
    Sommer U; Sommer F; Feuchtmayr H; Hansen T
    Protist; 2004 Sep; 155(3):295-304. PubMed ID: 15552056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Warming accelerates termination of a phytoplankton spring bloom by fungal parasites.
    Frenken T; Velthuis M; de Senerpont Domis LN; Stephan S; Aben R; Kosten S; van Donk E; Van de Waal DB
    Glob Chang Biol; 2016 Jan; 22(1):299-309. PubMed ID: 26488235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance.
    Garzke J; Ismar SMH; Sommer U
    Oecologia; 2015 Mar; 177(3):849-860. PubMed ID: 25413864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Daphnia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels.
    Sommer U; Sommer F; Santer B; Zöllner E; Jürgens K; Jamieson C; Boersma M; Gocke K
    Oecologia; 2003 May; 135(4):639-47. PubMed ID: 16228259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of phyto- and zooplankton communities to Prymnesium polylepis (Prymnesiales) bloom in the Baltic Sea.
    Gorokhova E; Hajdu S; Larsson U
    PLoS One; 2014; 9(11):e112985. PubMed ID: 25393031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of elevated terrestrial nutrient loads and temperature on pelagic food-web efficiency and fish production.
    Lefébure R; Degerman R; Andersson A; Larsson S; Eriksson LO; Båmstedt U; Byström P
    Glob Chang Biol; 2013 May; 19(5):1358-72. PubMed ID: 23505052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water temperature and mixing depth affect timing and magnitude of events during spring succession of the plankton.
    Berger SA; Diehl S; Stibor H; Trommer G; Ruhenstroth M; Wild A; Weigert A; Jäger CG; Striebel M
    Oecologia; 2007 Jan; 150(4):643-54. PubMed ID: 17024384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Return of warm conditions in the southeastern Bering Sea: Phytoplankton - Fish.
    Duffy-Anderson JT; Stabeno PJ; Siddon EC; Andrews AG; Cooper DW; Eisner LB; Farley EV; Harpold CE; Heintz RA; Kimmel DG; Sewall FF; Spear AH; Yasumishii EC
    PLoS One; 2017; 12(6):e0178955. PubMed ID: 28658253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oceans. Climate drives sea change.
    Greene CH; Pershing AJ
    Science; 2007 Feb; 315(5815):1084-5. PubMed ID: 17322049
    [No Abstract]   [Full Text] [Related]  

  • 14. The effects of food stoichiometry and temperature on copepods are mediated by ontogeny.
    Mathews L; Faithfull CL; Lenz PH; Nelson CE
    Oecologia; 2018 Sep; 188(1):75-84. PubMed ID: 29948318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoplankton-zooplankton dynamics in periodic environments taking into account eutrophication.
    Luo J
    Math Biosci; 2013 Oct; 245(2):126-36. PubMed ID: 23791607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of warming on phyto-bacterioplankton coupling and bacterial community composition in experimental mesocosms.
    von Scheibner M; Dörge P; Biermann A; Sommer U; Hoppe HG; Jürgens K
    Environ Microbiol; 2014 Mar; 16(3):718-33. PubMed ID: 23869806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate-driven warming during spring destabilises a Daphnia population: a mechanistic food web approach.
    Wagner A; Benndorf J
    Oecologia; 2007 Mar; 151(2):351-64. PubMed ID: 17120058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Warming of Subarctic waters accelerates development of a key marine zooplankton Calanus finmarchicus.
    Weydmann A; Walczowski W; Carstensen J; Kwaśniewski S
    Glob Chang Biol; 2018 Jan; 24(1):172-183. PubMed ID: 28801968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restoration impact of an uncontrolled phosphogypsum dump site on the seasonal distribution of abiotic variables, phytoplankton and zooplankton along the near shore of the south-western Mediterranean coast.
    Rekik A; Maalej S; Ayadi H; Aleya L
    Environ Sci Pollut Res Int; 2013 Jun; 20(6):3718-34. PubMed ID: 23149925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microzooplankton growth rates examined across a temperature gradient in the Barents Sea.
    Franzè G; Lavrentyev PJ
    PLoS One; 2014; 9(1):e86429. PubMed ID: 24475119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.