These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 17048814)

  • 1. Energetics of xylose decomposition as determined using quantum mechanics modeling.
    Nimlos MR; Qian X; Davis M; Himmel ME; Johnson DK
    J Phys Chem A; 2006 Oct; 110(42):11824-38. PubMed ID: 17048814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The optimization of formic acid hydrolysis of xylose in furfural production.
    Yang W; Li P; Bo D; Chang H
    Carbohydr Res; 2012 Aug; 357():53-61. PubMed ID: 22703600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical insight into the conversion of xylose to furfural in the gas phase and water.
    Wang M; Liu C; Li Q; Xu X
    J Mol Model; 2015 Nov; 21(11):296. PubMed ID: 26518688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic insights into the decomposition of fructose to hydroxy methyl furfural in neutral and acidic environments using high-level quantum chemical methods.
    Assary RS; Redfern PC; Greeley J; Curtiss LA
    J Phys Chem B; 2011 Apr; 115(15):4341-9. PubMed ID: 21443225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acid-catalyzed conversion of xylose in methanol-rich medium as part of biorefinery.
    Hu X; Lievens C; Li CZ
    ChemSusChem; 2012 Aug; 5(8):1427-34. PubMed ID: 22730169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose and fructose to platform chemicals: understanding the thermodynamic landscapes of acid-catalysed reactions using high-level ab initio methods.
    Assary RS; Kim T; Low JJ; Greeley J; Curtiss LA
    Phys Chem Chem Phys; 2012 Dec; 14(48):16603-11. PubMed ID: 22932938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acid-catalysed xylose dehydration into furfural in the presence of kraft lignin.
    Lamminpää K; Ahola J; Tanskanen J
    Bioresour Technol; 2015 Feb; 177():94-101. PubMed ID: 25479399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of hemicellulose sugars catalyzed by formic acid: kinetics of the dehydration of D-xylose, L-arabinose, and D-glucose.
    Dussan K; Girisuta B; Lopes M; Leahy JJ; Hayes MH
    ChemSusChem; 2015 Apr; 8(8):1411-28. PubMed ID: 25821128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Furfural formation from d-xylose: the use of different halides in dilute aqueous acidic solutions allows for exceptionally high yields.
    Marcotullio G; de Jong W
    Carbohydr Res; 2011 Aug; 346(11):1291-3. PubMed ID: 21620383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of 2-furaldehyde formation from D-xylose dehydration in the gas phase. A tandem mass spectrometric study.
    Ricci A; Piccolella S; Pepi F; Garzoli S; Giacomello P
    J Am Soc Mass Spectrom; 2013 Jul; 24(7):1082-9. PubMed ID: 23690250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of Microwave-Assisted Pyrolysis of Glucose to Furfural Revealed by Isotopic Tracer and Quantum Chemical Calculations.
    Bao L; Shi L; Luo H; Kong L; Li S; Wei W; Sun Y
    ChemSusChem; 2017 Aug; 10(15):3040-3043. PubMed ID: 28649716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dehydration of xylose to furfural over MCM-41-supported niobium-oxide catalysts.
    García-Sancho C; Sádaba I; Moreno-Tost R; Mérida-Robles J; Santamaría-González J; López-Granados M; Maireles-Torres P
    ChemSusChem; 2013 Apr; 6(4):635-42. PubMed ID: 23512820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of glycerol dehydration.
    Nimlos MR; Blanksby SJ; Qian X; Himmel ME; Johnson DK
    J Phys Chem A; 2006 May; 110(18):6145-56. PubMed ID: 16671686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational studies of the thermochemistry for conversion of glucose to levulinic acid.
    Assary RS; Redfern PC; Hammond JR; Greeley J; Curtiss LA
    J Phys Chem B; 2010 Jul; 114(27):9002-9. PubMed ID: 20572641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of xylose into furfural using lignosulfonic acid as catalyst in ionic liquid.
    Wu C; Chen W; Zhong L; Peng X; Sun R; Fang J; Zheng S
    J Agric Food Chem; 2014 Jul; 62(30):7430-5. PubMed ID: 25007384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of Brønsted acid-catalyzed glucose dehydration.
    Yang L; Tsilomelekis G; Caratzoulas S; Vlachos DG
    ChemSusChem; 2015 Apr; 8(8):1334-41. PubMed ID: 25572774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst.
    Li H; Deng A; Ren J; Liu C; Lu Q; Zhong L; Peng F; Sun R
    Bioresour Technol; 2014 Apr; 158():313-20. PubMed ID: 24632409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of furfural from xylose at atmospheric pressure by dilute sulfuric acid and inorganic salts.
    Rong C; Ding X; Zhu Y; Li Y; Wang L; Qu Y; Ma X; Wang Z
    Carbohydr Res; 2012 Mar; 350():77-80. PubMed ID: 22277539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen.
    Agirrezabal-Telleria I; Larreategui A; Requies J; Güemez MB; Arias PL
    Bioresour Technol; 2011 Aug; 102(16):7478-85. PubMed ID: 21624830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab-initio and experimental study of pentose sugar dehydration mechanism in the gas phase.
    Antonini L; Garzoli S; Ricci A; Troiani A; Salvitti C; Giacomello P; Ragno R; Patsilinakos A; Di Rienzo B; Pepi F
    Carbohydr Res; 2018 Mar; 458-459():19-28. PubMed ID: 29428483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.