These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 17048914)

  • 1. Self-assembly of nanoparticles into rings: a lattice-gas model.
    Yosef G; Rabani E
    J Phys Chem B; 2006 Oct; 110(42):20965-72. PubMed ID: 17048914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembly of nanoparticles in three-dimensions: formation of stalagmites.
    Sztrum CG; Hod O; Rabani E
    J Phys Chem B; 2005 Apr; 109(14):6741-7. PubMed ID: 16851758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drying-mediated self-assembly of nanoparticles.
    Rabani E; Reichman DR; Geissler PL; Brus LE
    Nature; 2003 Nov; 426(6964):271-4. PubMed ID: 14628047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dual-deposition setup for fabricating nanoparticle-thin film hybrid structures.
    Kala S; Mehta BR; Kruis FE
    Rev Sci Instrum; 2008 Jan; 79(1):013902. PubMed ID: 18248045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled assembly of nanoparticle structures: spherical and toroidal superlattices and nanoparticle-coated polymeric beads.
    Isojima T; Suh SK; Vander Sande JB; Hatton TA
    Langmuir; 2009 Jul; 25(14):8292-8. PubMed ID: 19435297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of ligated gold nanoparticles: phenomenological modeling and computer simulations.
    Khan SJ; Pierce F; Sorensen CM; Chakrabarti A
    Langmuir; 2009 Dec; 25(24):13861-8. PubMed ID: 19441832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coarse-grained force field for simulating polymer-tethered silsesquioxane self-assembly in solution.
    Chan ER; Striolo A; McCabe C; Cummings PT; Glotzer SC
    J Chem Phys; 2007 Sep; 127(11):114102. PubMed ID: 17887823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulation of nanoparticle self-assembly at a liquid-liquid interface.
    Luo M; Mazyar OA; Zhu Q; Vaughn MW; Hase WL; Dai LL
    Langmuir; 2006 Jul; 22(14):6385-90. PubMed ID: 16800703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of magnetic nanoparticles in evaporating solution.
    Ku J; Aruguete DM; Alivisatos AP; Geissler PL
    J Am Chem Soc; 2011 Feb; 133(4):838-48. PubMed ID: 21158454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly of magnetic nanoparticles into higher structures on patterned magnetic beads under the influence of magnetic field.
    Ozdemir T; Sandal D; Culha M; Sanyal A; Atay NZ; Bucak S
    Nanotechnology; 2010 Mar; 21(12):125603. PubMed ID: 20203359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembling structures and thin-film microscopic morphologies of amphiphilic rod-coil block oligomers.
    Li H; Liu Q; Qin L; Xu M; Lin X; Yin S; Wu L; Su Z; Shen J
    J Colloid Interface Sci; 2005 Sep; 289(2):488-97. PubMed ID: 15936765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of concentrated polymer solutions in thin film geometry. II. Solvent evaporation near the glass transition.
    Peter S; Meyer H; Baschnagel J
    J Chem Phys; 2009 Jul; 131(1):014903. PubMed ID: 19586120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice.
    Kalsin AM; Fialkowski M; Paszewski M; Smoukov SK; Bishop KJ; Grzybowski BA
    Science; 2006 Apr; 312(5772):420-4. PubMed ID: 16497885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphogenesis of evaporation-induced self-assemblies of polypyrrole nanoparticles dispersed in a liquid medium.
    Jang J; Oh JH
    Langmuir; 2004 Sep; 20(20):8419-22. PubMed ID: 15379454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical assemblies of gold nanoparticles at the surface of a film formed by a bridged silsesquioxane containing pendant dodecyl chains.
    Gómez ML; Hoppe CE; Zucchi IA; Williams RJ; Giannotti MI; López-Quintela MA
    Langmuir; 2009 Jan; 25(2):1210-7. PubMed ID: 19105745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dewetting-mediated pattern formation in nanoparticle assemblies.
    Stannard A
    J Phys Condens Matter; 2011 Mar; 23(8):083001. PubMed ID: 21411892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially adaptive lattice coarse-grained Monte Carlo simulations for diffusion of interacting molecules.
    Chatterjee A; Vlachos DG; Katsoulakis MA
    J Chem Phys; 2004 Dec; 121(22):11420-31. PubMed ID: 15634102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Top-down approaches to the formation of silica nanoparticle patterns.
    Xia D; Li D; Ku Z; Luo Y; Brueck SR
    Langmuir; 2007 May; 23(10):5377-85. PubMed ID: 17425349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of highly ordered rectangular nanoparticle superlattices by the cooperative self-assembly of nanoparticles and fatty molecules.
    Harada T; Hatton TA
    Langmuir; 2009 Jun; 25(11):6407-12. PubMed ID: 19466789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaporative self-assembly of single-chain, polymeric nanoparticles.
    van Roekel HW; Stals PJ; Gillissen MA; Hilbers PA; Markvoort AJ; de Greef TF
    Chem Commun (Camb); 2013 Apr; 49(30):3122-4. PubMed ID: 23471136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.