These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 17048938)
41. The stability of bubbles formed from supersaturated solutions, and homogeneous nucleation of gas bubbles from solution, both revisited. Goldman S J Phys Chem B; 2008 Dec; 112(51):16701-9. PubMed ID: 19032116 [TBL] [Abstract][Full Text] [Related]
42. Surfactant Scavenging and Surface Deposition by Rising Bubbles. Stefan RL; Szeri AJ J Colloid Interface Sci; 1999 Apr; 212(1):1-13. PubMed ID: 10072269 [TBL] [Abstract][Full Text] [Related]
43. The kinetics of nucleation and growth of sickle cell hemoglobin fibers. Galkin O; Nagel RL; Vekilov PG J Mol Biol; 2007 Jan; 365(2):425-39. PubMed ID: 17069853 [TBL] [Abstract][Full Text] [Related]
44. Some aspects of the design of sonochemical reactors. Gogate PR; Wilhelm AM; Pandit AB Ultrason Sonochem; 2003 Oct; 10(6):325-30. PubMed ID: 12927607 [TBL] [Abstract][Full Text] [Related]
45. Effect of the Rayleigh-Taylor instability on maximum reachable temperatures in laser-induced bubbles. Rechiman LM; Bonetto FJ; Rosselló JM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):027301. PubMed ID: 23005890 [TBL] [Abstract][Full Text] [Related]
46. Ethanol as a Probe for the Mechanism of Bubble Nucleation in the Diet Coke and Mentos Experiment. Kuntzleman TS; Kuntzleman JT Molecules; 2021 Mar; 26(6):. PubMed ID: 33802982 [TBL] [Abstract][Full Text] [Related]
47. Nucleation stage with nonsteady growth of supercritical gas bubbles in a strongly supersaturated liquid solution and the effect of excluded volume. Kuchma AE; Kuni FM; Shchekin AK Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061125. PubMed ID: 20365136 [TBL] [Abstract][Full Text] [Related]
48. Theoretical model of ice nucleation induced by acoustic cavitation. Part 1: Pressure and temperature profiles around a single bubble. Cogné C; Labouret S; Peczalski R; Louisnard O; Baillon F; Espitalier F Ultrason Sonochem; 2016 Mar; 29():447-54. PubMed ID: 26044460 [TBL] [Abstract][Full Text] [Related]
49. Plasmonic Bubble Nucleation and Growth in Water: Effect of Dissolved Air. Li X; Wang Y; Zaytsev ME; Lajoinie G; Le The H; Bomer JG; Eijkel JCT; Zandvliet HJW; Zhang X; Lohse D J Phys Chem C Nanomater Interfaces; 2019 Sep; 123(38):23586-23593. PubMed ID: 31583035 [TBL] [Abstract][Full Text] [Related]
50. Steady-state composition of a two-component gas bubble growing in a liquid solution: self-similar approach. Gor GY; Kuchma AE J Chem Phys; 2009 Dec; 131(23):234705. PubMed ID: 20025340 [TBL] [Abstract][Full Text] [Related]
51. Gas-bubble effects on the formation of colloidal iron oxide nanocrystals. Lynch J; Zhuang J; Wang T; LaMontagne D; Wu H; Cao YC J Am Chem Soc; 2011 Aug; 133(32):12664-74. PubMed ID: 21702497 [TBL] [Abstract][Full Text] [Related]
52. Modeling photoacoustic cavitation nucleation and bubble dynamics with modified classical nucleation theory. Qin D; Feng Y; Wan M J Acoust Soc Am; 2015 Sep; 138(3):1282-9. PubMed ID: 26428766 [TBL] [Abstract][Full Text] [Related]
53. A physiological model of the release of gas bubbles from crevices under decompression. Chappell MA; Payne SJ Respir Physiol Neurobiol; 2006 Sep; 153(2):166-80. PubMed ID: 16309977 [TBL] [Abstract][Full Text] [Related]
54. Optimum bubble temperature for the sonochemical production of oxidants. Yasui K; Tuziuti T; Iida Y Ultrasonics; 2004 Apr; 42(1-9):579-84. PubMed ID: 15047350 [TBL] [Abstract][Full Text] [Related]
55. Superheating of liquid xenon in metal tubes. Baidakov VG; Kaverin AM J Chem Phys; 2009 Aug; 131(6):064708. PubMed ID: 19691404 [TBL] [Abstract][Full Text] [Related]
56. Kinetics of CO2 nanobubble formation at the solid/water interface. Yang J; Duan J; Fornasiero D; Ralston J Phys Chem Chem Phys; 2007 Dec; 9(48):6327-32. PubMed ID: 18060162 [TBL] [Abstract][Full Text] [Related]
57. Energy concentration and positional stability of sonoluminescent bubbles in sulfuric acid for different static pressures. Rosselló JM; Dellavale D; Bonetto FJ Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033026. PubMed ID: 24125363 [TBL] [Abstract][Full Text] [Related]
58. Bubble dynamics inside an outgassing hydrogel confined in a Hele-Shaw cell. Haudin F; Noblin X; Bouret Y; Argentina M; Raufaste C Phys Rev E; 2016 Aug; 94(2-1):023109. PubMed ID: 27627394 [TBL] [Abstract][Full Text] [Related]
59. Alpha-synuclein aggregation variable temperature and variable pH kinetic data: a re-analysis using the Finke-Watzky 2-step model of nucleation and autocatalytic growth. Morris AM; Finke RG Biophys Chem; 2009 Mar; 140(1-3):9-15. PubMed ID: 19101068 [TBL] [Abstract][Full Text] [Related]
60. Thermodynamic and kinetic considerations of nucleation and stabilization of acoustic cavitation bubbles in water. Bapat PS; Pandit AB Ultrason Sonochem; 2008 Jan; 15(1):65-77. PubMed ID: 17368069 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]