BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 17049488)

  • 1. Isothermal titration calorimetric study defines the substrate binding residues of calreticulin.
    Gopalakrishnapai J; Gupta G; Karthikeyan T; Sinha S; Kandiah E; Gemma E; Oscarson S; Surolia A
    Biochem Biophys Res Commun; 2006 Dec; 351(1):14-20. PubMed ID: 17049488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutational analysis provides molecular insight into the carbohydrate-binding region of calreticulin: pivotal roles of tyrosine-109 and aspartate-135 in carbohydrate recognition.
    Kapoor M; Ellgaard L; Gopalakrishnapai J; Schirra C; Gemma E; Oscarson S; Helenius A; Surolia A
    Biochemistry; 2004 Jan; 43(1):97-106. PubMed ID: 14705935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defining substrate interactions with calreticulin: an isothermal titration calorimetric study.
    Gupta G; Gemma E; Oscarson S; Surolia A
    Glycoconj J; 2008 Nov; 25(8):797-802. PubMed ID: 18553166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and synthesis of oligosaccharides that interfere with glycoprotein quality-control systems.
    Arai MA; Matsuo I; Hagihara S; Totani K; Maruyama J; Kitamoto K; Ito Y
    Chembiochem; 2005 Dec; 6(12):2281-9. PubMed ID: 16283686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sugar-binding activity of the MRH domain in the ER alpha-glucosidase II beta subunit is important for efficient glucose trimming.
    Hu D; Kamiya Y; Totani K; Kamiya D; Kawasaki N; Yamaguchi D; Matsuo I; Matsumoto N; Ito Y; Kato K; Yamamoto K
    Glycobiology; 2009 Oct; 19(10):1127-35. PubMed ID: 19625484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural framework of the GABARAP-calreticulin interface--implications for substrate binding to endoplasmic reticulum chaperones.
    Thielmann Y; Weiergräber OH; Mohrlüder J; Willbold D
    FEBS J; 2009 Feb; 276(4):1140-52. PubMed ID: 19154346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification by mutational analysis of amino acid residues essential in the chaperone function of calreticulin.
    Martin V; Groenendyk J; Steiner SS; Guo L; Dabrowska M; Parker JM; Müller-Esterl W; Opas M; Michalak M
    J Biol Chem; 2006 Jan; 281(4):2338-46. PubMed ID: 16291754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gentamicin binds to the lectin site of calreticulin and inhibits its chaperone activity.
    Horibe T; Matsui H; Tanaka M; Nagai H; Yamaguchi Y; Kato K; Kikuchi M
    Biochem Biophys Res Commun; 2004 Oct; 323(1):281-7. PubMed ID: 15351734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Difference in the binding mode of two mannose-binding proteins: demonstration of a selective minicluster effect.
    Quesenberry MS; Lee RT; Lee YC
    Biochemistry; 1997 Mar; 36(9):2724-32. PubMed ID: 9054581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ER-60 domains responsible for interaction with calnexin and calreticulin.
    Urade R; Okudo H; Kato H; Moriyama T; Arakaki Y
    Biochemistry; 2004 Jul; 43(27):8858-68. PubMed ID: 15236594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative homology modeling of human cytochrome P4501A1 (CYP1A1) and confirmation of residues involved in 7-ethoxyresorufin O-deethylation by site-directed mutagenesis and enzyme kinetic analysis.
    Lewis BC; Mackenzie PI; Miners JO
    Arch Biochem Biophys; 2007 Dec; 468(1):58-69. PubMed ID: 17959138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A phospho-sugar binding domain homologous to NagB enzymes regulates the activity of the central glycolytic genes repressor.
    Doan T; Martin L; Zorrilla S; Chaix D; Aymerich S; Labesse G; Declerck N
    Proteins; 2008 Jun; 71(4):2038-50. PubMed ID: 18186488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interplay between calcium and the in vitro lectin and chaperone activities of calreticulin.
    Conte IL; Keith N; Gutiérrez-Gonzalez C; Parodi AJ; Caramelo JJ
    Biochemistry; 2007 Apr; 46(15):4671-80. PubMed ID: 17385894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Helicobacter pylori UreE, a urease accessory protein: specific Ni(2+)- and Zn(2+)-binding properties and interaction with its cognate UreG.
    Bellucci M; Zambelli B; Musiani F; Turano P; Ciurli S
    Biochem J; 2009 Jul; 422(1):91-100. PubMed ID: 19476442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR structures of 36 and 73-residue fragments of the calreticulin P-domain.
    Ellgaard L; Bettendorff P; Braun D; Herrmann T; Fiorito F; Jelesarov I; Güntert P; Helenius A; Wüthrich K
    J Mol Biol; 2002 Sep; 322(4):773-84. PubMed ID: 12270713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A binding free energy hot spot in the ankyrin repeat protein GABPbeta mediated protein-protein interaction.
    Desrosiers DC; Peng ZY
    J Mol Biol; 2005 Nov; 354(2):375-84. PubMed ID: 16243355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetics of carbohydrate binding to Momordica charantia (bitter gourd) lectin: an isothermal titration calorimetric study.
    Sultan NA; Swamy MJ
    Arch Biochem Biophys; 2005 May; 437(1):115-25. PubMed ID: 15820223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diastereomeric molecular recognition and binding behavior of bile acids by L/D-tryptophan-modified beta-cyclodextrins.
    Wang H; Cao R; Ke CF; Liu Y; Wada T; Inoue Y
    J Org Chem; 2005 Oct; 70(22):8703-11. PubMed ID: 16238298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of CYP2D6 substrate interactions by computational methods.
    Ito Y; Kondo H; Goldfarb PS; Lewis DF
    J Mol Graph Model; 2008 Feb; 26(6):947-56. PubMed ID: 17764997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analyses of carbohydrate binding property of lectin-chaperone calreticulin.
    Tatami A; Hon YS; Matsuo I; Takatani M; Koshino H; Ito Y
    Biochem Biophys Res Commun; 2007 Dec; 364(2):332-7. PubMed ID: 17950701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.