BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 17049809)

  • 21. A biologically inspired algorithm for microcalcification cluster detection.
    Linguraru MG; Marias K; English R; Brady M
    Med Image Anal; 2006 Dec; 10(6):850-62. PubMed ID: 16945569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection of single and clustered microcalcifications in mammograms using fractals models and neural networks.
    Bocchi L; Coppini G; Nori J; Valli G
    Med Eng Phys; 2004 May; 26(4):303-12. PubMed ID: 15121055
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An automatic microcalcification detection system based on a hybrid neural network classifier.
    Papadopoulos A; Fotiadis DI; Likas A
    Artif Intell Med; 2002 Jun; 25(2):149-67. PubMed ID: 12031604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Feature selection for computerized mass detection in digitized mammograms by using a genetic algorithm.
    Zheng B; Chang YH; Wang XH; Good WF; Gur D
    Acad Radiol; 1999 Jun; 6(6):327-32. PubMed ID: 10376062
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of breast masses in mammograms by density slicing and texture flow-field analysis.
    Mudigonda NR; Rangayyan RM; Desautels JE
    IEEE Trans Med Imaging; 2001 Dec; 20(12):1215-27. PubMed ID: 11811822
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computerized evaluation of mammographic lesions: what diagnostic role does the shape of the individual microcalcifications play compared with the geometry of the cluster?
    Leichter I; Lederman R; Buchbinder SS; Bamberger P; Novak B; Fields S
    AJR Am J Roentgenol; 2004 Mar; 182(3):705-12. PubMed ID: 14975973
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Digital mammography. ROC studies of the effects of pixel size and unsharp-mask filtering on the detection of subtle microcalcifications.
    Chan HP; Vyborny CJ; MacMahon H; Metz CE; Doi K; Sickles EA
    Invest Radiol; 1987 Jul; 22(7):581-9. PubMed ID: 3623862
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integration of fuzzy logic and structure tensor towards mammogram contrast enhancement.
    Jiang J; Yao B; Wason AM
    Comput Med Imaging Graph; 2005 Jan; 29(1):83-90. PubMed ID: 15710543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel approach for detection and classification of mammographic microcalcifications using wavelet analysis and extreme learning machine.
    Malar E; Kandaswamy A; Chakravarthy D; Giri Dharan A
    Comput Biol Med; 2012 Sep; 42(9):898-905. PubMed ID: 22871899
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Noise equalization for detection of microcalcification clusters in direct digital mammogram images.
    McLoughlin KJ; Bones PJ; Karssemeijer N
    IEEE Trans Med Imaging; 2004 Mar; 23(3):313-20. PubMed ID: 15027524
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A study on two different CAD systems for mammography as an aid to radiological diagnosis in the search of microcalcification clusters.
    Lauria A; Palmiero R; Forni G; Fantacci ME; Imbriaco M; Sodano A; Indovina PL
    Eur J Radiol; 2005 Aug; 55(2):264-9. PubMed ID: 16036158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Region-based wavelet coding methods for digital mammography.
    Penedo M; Pearlman WA; Tahoces PG; Souto M; Vidal JJ
    IEEE Trans Med Imaging; 2003 Oct; 22(10):1288-96. PubMed ID: 14552582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Segmentation and numerical analysis of microcalcifications on mammograms using mathematical morphology.
    Betal D; Roberts N; Whitehouse GH
    Br J Radiol; 1997 Sep; 70(837):903-17. PubMed ID: 9486066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Classification of Microcalcification Clusters in Digital Mammograms Using a Stack Generalization Based Classifier.
    Alam N; R E Denton E; Zwiggelaar R
    J Imaging; 2019 Sep; 5(9):. PubMed ID: 34460670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A New Collaborative Classification Process for Microcalcification Detection Based on Graphs and Knowledge Propagation.
    Touil A; Kalti K; Conze PH; Solaiman B; Mahjoub MA
    J Digit Imaging; 2022 Dec; 35(6):1560-1575. PubMed ID: 35915367
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of feature selection methods for the detection of breast cancers in mammograms: adaptive sequential floating search vs. genetic algorithm.
    Sun Y; Babbs CF; Delp EJ
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():6532-5. PubMed ID: 17281766
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Hybrid Deep Transfer Learning of CNN-Based LR-PCA for Breast Lesion Diagnosis via Medical Breast Mammograms.
    Samee NA; Alhussan AA; Ghoneim VF; Atteia G; Alkanhel R; Al-Antari MA; Kadah YM
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Automatic Detection and Localization of Mammographic Microcalcifications ROI with Multi-Scale Features Using the Radiomics Analysis Approach.
    Mahmood T; Li J; Pei Y; Akhtar F; Imran A; Yaqub M
    Cancers (Basel); 2021 Nov; 13(23):. PubMed ID: 34885026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Method for Microcalcifications Detection in Breast Mammograms.
    Alasadi AH; Al-Saedi AK
    J Med Syst; 2017 Apr; 41(4):68. PubMed ID: 28284000
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discrimination of Breast Cancer with Microcalcifications on Mammography by Deep Learning.
    Wang J; Yang X; Cai H; Tan W; Jin C; Li L
    Sci Rep; 2016 Jun; 6():27327. PubMed ID: 27273294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.