BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17049877)

  • 1. Aspartic acid side chain effect-experimental and theoretical insight.
    Rozman M
    J Am Soc Mass Spectrom; 2007 Jan; 18(1):121-7. PubMed ID: 17049877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetics and dynamics of the fragmentation reactions of protonated peptides containing methionine sulfoxide or aspartic acid via energy- and time-resolved surface induced dissociation.
    Lioe H; Laskin J; Reid GE; O'Hair RA
    J Phys Chem A; 2007 Oct; 111(42):10580-8. PubMed ID: 17914758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational investigation and hydrogen/deuterium exchange of the fixed charge derivative tris(2,4,6-trimethoxyphenyl) phosphonium: implications for the aspartic acid cleavage mechanism.
    Herrmann KA; Wysocki VH; Vorpagel ER
    J Am Soc Mass Spectrom; 2005 Jul; 16(7):1067-80. PubMed ID: 15921922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C-terminal amino acid residue loss for deprotonated peptide ions containing glutamic acid, aspartic acid, or serine residues at the C-terminus.
    Li Z; Yalcin T; Cassady CJ
    J Mass Spectrom; 2006 Jul; 41(7):939-49. PubMed ID: 16810639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective gas-phase cleavage at the peptide bond C-terminal to aspartic acid in fixed-charge derivatives of Asp-containing peptides.
    Gu C; Tsaprailis G; Breci L; Wysocki VH
    Anal Chem; 2000 Dec; 72(23):5804-13. PubMed ID: 11128940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational study on nonenzymatic peptide bond cleavage at asparagine and aspartic acid.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2008 Sep; 112(37):8752-61. PubMed ID: 18714962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobile and localized protons: a framework for understanding peptide dissociation.
    Wysocki VH; Tsaprailis G; Smith LL; Breci LA
    J Mass Spectrom; 2000 Dec; 35(12):1399-406. PubMed ID: 11180630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal cation dependence of interactions with amino acids: bond dissociation energies of Rb(+) and Cs(+) to the acidic amino acids and their amide derivatives.
    Armentrout PB; Yang B; Rodgers MT
    J Phys Chem B; 2014 Apr; 118(16):4300-14. PubMed ID: 24528155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A vibrational spectral maker for probing the hydrogen-bonding status of protonated Asp and Glu residues.
    Nie B; Stutzman J; Xie A
    Biophys J; 2005 Apr; 88(4):2833-47. PubMed ID: 15653739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling of electron transfer to proton uptake at the Q(B) site of the bacterial reaction center: a perspective from FTIR difference spectroscopy.
    Nabedryk E; Breton J
    Biochim Biophys Acta; 2008 Oct; 1777(10):1229-48. PubMed ID: 18671937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic study of competitive releases of H
    Barbier Saint Hilaire P; Warnet A; Gimbert Y; Hohenester UM; Giorgi G; Olivier MF; Fenaille F; Colsch B; Junot C; Tabet JC
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Mar; 1047():64-74. PubMed ID: 27592168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of mono- and divalent metal ions with aspartic and glutamic acid investigated with IR photodissociation spectroscopy and theory.
    O'Brien JT; Prell JS; Steill JD; Oomens J; Williams ER
    J Phys Chem A; 2008 Oct; 112(43):10823-30. PubMed ID: 18828579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative ion fragmentations of deprotonated peptides: backbone cleavages directed through both Asp and Glu.
    Brinkworth CS; Dua S; McAnoy AM; Bowie JH
    Rapid Commun Mass Spectrom; 2001; 15(20):1965-73. PubMed ID: 11596143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Five-membered ring formation in unimolecular reactions of peptides: a key structural element controlling low-energy collision-induced dissociation of peptides.
    Schlosser A; Lehmann WD
    J Mass Spectrom; 2000 Dec; 35(12):1382-90. PubMed ID: 11180628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass spectrometric differentiation of alpha- and beta-aspartic acid in a pseudo-tetrapeptide thrombosis inhibitor and its isomer.
    Luu NC; Robinson S; Zhao R; McKean R; Ridge DP
    Eur J Mass Spectrom (Chichester); 2004; 10(2):279-87. PubMed ID: 15103105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Further studies on the fragmentation of protonated ions of peptides containing aspartic acid, glutamic acid, cysteine sulfinic acid, and cysteine sulfonic acid.
    Men L; Wang Y
    Rapid Commun Mass Spectrom; 2005; 19(1):23-30. PubMed ID: 15570570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a novel protonation pattern for carboxylic acids upon Q(B) photoreduction in Rhodobacter sphaeroides reaction center mutants at Asp-L213 and Glu-L212 sites.
    Nabedryk E; Breton J; Okamura MY; Paddock ML
    Biochemistry; 2004 Jun; 43(23):7236-43. PubMed ID: 15182169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fragmentation of the deprotonated ions of peptides containing cysteine, cysteine sulfinic acid, cysteine sulfonic acid, aspartic acid, and glutamic acid.
    Men L; Wang Y
    Rapid Commun Mass Spectrom; 2006; 20(5):777-84. PubMed ID: 16470564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and Theoretical Investigations of Infrared Multiple Photon Dissociation Spectra of Aspartic Acid Complexes with Zn
    Boles GC; Hightower RL; Coates RA; McNary CP; Berden G; Oomens J; Armentrout PB
    J Phys Chem B; 2018 Apr; 122(14):3836-3853. PubMed ID: 29502412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the mechanism of aspartic acid cleavage and glutamine deamidation in the acidic degradation of glucagon.
    Joshi AB; Sawai M; Kearney WR; Kirsch LE
    J Pharm Sci; 2005 Sep; 94(9):1912-27. PubMed ID: 16052557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.