BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 17049877)

  • 21. Studies on the mechanism of aspartic acid cleavage and glutamine deamidation in the acidic degradation of glucagon.
    Joshi AB; Sawai M; Kearney WR; Kirsch LE
    J Pharm Sci; 2005 Sep; 94(9):1912-27. PubMed ID: 16052557
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental and theoretical investigations of infrared multiple photon dissociation spectra of glutamic acid complexes with Zn
    Boles GC; Owen CJ; Berden G; Oomens J; Armentrout PB
    Phys Chem Chem Phys; 2017 May; 19(19):12394-12406. PubMed ID: 28462956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Involvement of glutamic acid 278 in the redox reaction of the cytochrome c oxidase from Paracoccus denitrificans investigated by FTIR spectroscopy.
    Hellwig P; Behr J; Ostermeier C; Richter OM; Pfitzner U; Odenwald A; Ludwig B; Michel H; Mäntele W
    Biochemistry; 1998 May; 37(20):7390-9. PubMed ID: 9585553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The pH-dependence of amide chemical shift of Asp/Glu reflects its pKa in intrinsically disordered proteins with only local interactions.
    Pujato M; Navarro A; Versace R; Mancusso R; Ghose R; Tasayco ML
    Biochim Biophys Acta; 2006 Jul; 1764(7):1227-33. PubMed ID: 16787768
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monitoring the pH dependence of IR carboxylic acid signals upon Q(B)- formation in the Glu-L212 --> Asp/Asp-L213 --> Glu swap mutant reaction center from Rhodobacter sphaeroides.
    Nabedryk E; Paddock ML; Okamura MY; Breton J
    Biochemistry; 2007 Feb; 46(5):1176-82. PubMed ID: 17260947
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gas-phase deprotonation of the peptide backbone for tripeptides and their methyl esters with hydrogen and methyl side chains.
    Bokatzian-Johnson SS; Stover ML; Dixon DA; Cassady CJ
    J Phys Chem B; 2012 Dec; 116(51):14844-58. PubMed ID: 23194315
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel salt bridge mechanism highlights the need for nonmobile proton conditions to promote disulfide bond cleavage in protonated peptides under low-energy collisional activation.
    Lioe H; O'Hair RA
    J Am Soc Mass Spectrom; 2007 Jun; 18(6):1109-23. PubMed ID: 17462910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Access to cyclic or branched peptides using bis(2-sulfanylethyl)amido side-chain derivatives of Asp and Glu.
    Boll E; Dheur J; Drobecq H; Melnyk O
    Org Lett; 2012 May; 14(9):2222-5. PubMed ID: 22537053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proton-transfer reactions in reaction center of photosynthetic bacteria Rhodobacter sphaeroides.
    Kaneko Y; Hayashi S; Ohmine I
    J Phys Chem B; 2009 Jul; 113(26):8993-9003. PubMed ID: 19496556
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons.
    Bythell BJ; Suhai S; Somogyi A; Paizs B
    J Am Chem Soc; 2009 Oct; 131(39):14057-65. PubMed ID: 19746933
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A switchable stapled peptide.
    Kalistratova A; Legrand B; Verdié P; Naydenova E; Amblard M; Martinez J; Subra G
    J Pept Sci; 2016 Mar; 22(3):143-8. PubMed ID: 26785930
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gas-phase IR spectroscopy of deprotonated amino acids.
    Oomens J; Steill JD; Redlich B
    J Am Chem Soc; 2009 Apr; 131(12):4310-9. PubMed ID: 19267428
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proton uptake by carboxylic acid groups upon photoreduction of the secondary quinone (QB) in bacterial reaction centers from Rhodobacter sphaeroides: FTIR studies on the effects of replacing Glu H173.
    Nabedryk E; Breton J; Okamura MY; Paddock ML
    Biochemistry; 1998 Oct; 37(41):14457-62. PubMed ID: 9772172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structures of bare and hydrated [Pb(aminoacid-H)]+ complexes using infrared multiple photon dissociation spectroscopy.
    Burt MB; Decker SG; Atkins CG; Rowsell M; Peremans A; Fridgen TD
    J Phys Chem B; 2011 Oct; 115(39):11506-18. PubMed ID: 21875029
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vibrational spectroscopy and DFT calculations of the di-amino acid peptide L-aspartyl-L-glutamic acid in the zwitterionic state.
    Kausar N; Dines TJ; Chowdhry BZ; Alexander BD
    Phys Chem Chem Phys; 2009 Aug; 11(30):6389-400. PubMed ID: 19809670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A density functional theory study on peptide bond cleavage at aspartic residues: direct vs cyclic intermediate hydrolysis.
    Sang-aroon W; Amornkitbamrung V; Ruangpornvisuti V
    J Mol Model; 2013 Dec; 19(12):5501-13. PubMed ID: 24241182
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the consequences of side chain flexibility and backbone conformation on hydration and proton dissociation in perfluorosulfonic acid membranes.
    Paddison SJ; Elliott JA
    Phys Chem Chem Phys; 2006 May; 8(18):2193-203. PubMed ID: 16751878
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Triaspartate: a model system for conformationally flexible DDD motifs in proteins.
    Duitch L; Toal S; Measey TJ; Schweitzer-Stenner R
    J Phys Chem B; 2012 May; 116(17):5160-71. PubMed ID: 22435395
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential effects of the Zn-His-Bkb vs Zn-His-[Asp/Glu] triad on Zn-core stability and reactivity.
    Lin YL; Lee YM; Lim C
    J Am Chem Soc; 2005 Aug; 127(32):11336-47. PubMed ID: 16089463
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative studies on the discrepant fragmentation mechanisms of the GLy-Asp-Gly-Arg and Arg-Gly-Asp-Gly: evidence for the mobile proton model.
    Eur J Mass Spectrom (Chichester); 2014; 20(4):317-25. PubMed ID: 25420344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.