These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 17049880)

  • 61. An iron dioxygenase from Alcaligenes faecalis catalyzing the oxidation of pyruvic oxime to nitrite.
    Ono Y; Makino N; Hoshino Y; Shoji K; Yamanaka T
    FEMS Microbiol Lett; 1996 Jun; 139(2-3):103-8. PubMed ID: 8674977
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Two-component carnitine monooxygenase from Escherichia coli: functional characterization, inhibition and mutagenesis of the molecular interface.
    Piskol F; Neubauer K; Eggers M; Bode LM; Jasper J; Slusarenko A; Reijerse E; Lubitz W; Jahn D; Moser J
    Biosci Rep; 2022 Sep; 42(9):. PubMed ID: 36066069
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Hydroxylamine reductase activity of the hybrid cluster protein from Escherichia coli.
    Wolfe MT; Heo J; Garavelli JS; Ludden PW
    J Bacteriol; 2002 Nov; 184(21):5898-902. PubMed ID: 12374823
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Growth of human lymphoid cells (Raji strain) in a five-liter fermentor.
    Klein F; Mahlandt BG; Lincoln RE
    Appl Microbiol; 1971 Jul; 22(1):145-6. PubMed ID: 5111304
    [TBL] [Abstract][Full Text] [Related]  

  • 65. An improved method for the preparation of sulphur and iron containing differentiation media.
    RAPPAPORT F; RABINOVITZ M; KONFORTI N
    Appl Microbiol; 1958 Jul; 6(4):264-5. PubMed ID: 13559977
    [No Abstract]   [Full Text] [Related]  

  • 66. Biochemical and structural characterization of an aromatic ring-hydroxylating dioxygenase for terephthalic acid catabolism.
    Kincannon WM; Zahn M; Clare R; Lusty Beech J; Romberg A; Larson J; Bothner B; Beckham GT; McGeehan JE; DuBois JL
    Proc Natl Acad Sci U S A; 2022 Mar; 119(13):e2121426119. PubMed ID: 35312352
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Heterologous Expression of Active
    Picott KJ; Flick R; Edwards EA
    Appl Environ Microbiol; 2022 Feb; 88(3):e0199321. PubMed ID: 34851719
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Microbial synthesis of vanillin from waste poly(ethylene terephthalate).
    Sadler JC; Wallace S
    Green Chem; 2021 Jul; 23(13):4665-4672. PubMed ID: 34276250
    [TBL] [Abstract][Full Text] [Related]  

  • 69. C-H Hydroxylation in Paralytic Shellfish Toxin Biosynthesis.
    Lukowski AL; Ellinwood DC; Hinze ME; DeLuca RJ; Du Bois J; Hall S; Narayan ARH
    J Am Chem Soc; 2018 Sep; 140(37):11863-11869. PubMed ID: 30192526
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Soluble Production of Human Recombinant VEGF-A121 by Using SUMO Fusion Technology in Escherichia coli.
    Samuel RVM; Farrukh SY; Rehmat S; Hanif MU; Ahmed SS; Musharraf SG; Durrani FG; Saleem M; Gul R
    Mol Biotechnol; 2018 Aug; 60(8):585-594. PubMed ID: 29943150
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Robust Production, Crystallization, Structure Determination, and Analysis of [Fe-S] Proteins: Uncovering Control of Electron Shuttling and Gating in the Respiratory Metabolism of Molybdopterin Guanine Dinucleotide Enzymes.
    Tsai CL; Tainer JA
    Methods Enzymol; 2018; 599():157-196. PubMed ID: 29746239
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Biosynthesis of 8-O-Methylated Benzoxazinoid Defense Compounds in Maize.
    Handrick V; Robert CA; Ahern KR; Zhou S; Machado RA; Maag D; Glauser G; Fernandez-Penny FE; Chandran JN; Rodgers-Melnik E; Schneider B; Buckler ES; Boland W; Gershenzon J; Jander G; Erb M; Köllner TG
    Plant Cell; 2016 Jul; 28(7):1682-700. PubMed ID: 27317675
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Reconstitution of active mycobacterial binuclear iron monooxygenase complex in Escherichia coli.
    Furuya T; Hayashi M; Kino K
    Appl Environ Microbiol; 2013 Oct; 79(19):6033-9. PubMed ID: 23892738
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Sequestration of a highly reactive intermediate in an evolving pathway for degradation of pentachlorophenol.
    Yadid I; Rudolph J; Hlouchova K; Copley SD
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):E2182-90. PubMed ID: 23676275
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structural and functional studies of the Escherichia coli phenylacetyl-CoA monooxygenase complex.
    Grishin AM; Ajamian E; Tao L; Zhang L; Menard R; Cygler M
    J Biol Chem; 2011 Mar; 286(12):10735-43. PubMed ID: 21247899
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Distal end of 105-125 loop--a putative reductase binding domain of phthalate dioxygenase.
    Tarasev M; Pullela S; Ballou DP
    Arch Biochem Biophys; 2009 Jul; 487(1):10-8. PubMed ID: 19464996
    [TBL] [Abstract][Full Text] [Related]  

  • 77. High levels of expression of the iron-sulfur proteins phthalate dioxygenase and phthalate dioxygenase reductase in Escherichia coli.
    Jaganaman S; Pinto A; Tarasev M; Ballou DP
    Protein Expr Purif; 2007 Apr; 52(2):273-9. PubMed ID: 17049880
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Rates of the phthalate dioxygenase reaction with oxygen are dramatically increased by interactions with phthalate and phthalate oxygenase reductase.
    Tarasev M; Rhames F; Ballou DP
    Biochemistry; 2004 Oct; 43(40):12799-808. PubMed ID: 15461452
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Chemistry of the catalytic conversion of phthalate into its cis-dihydrodiol during the reaction of oxygen with the reduced form of phthalate dioxygenase.
    Tarasev M; Ballou DP
    Biochemistry; 2005 Apr; 44(16):6197-207. PubMed ID: 15835907
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Substitutions of the "bridging" aspartate 178 result in profound changes in the reactivity of the Rieske center of phthalate dioxygenase.
    Pinto A; Tarasev M; Ballou DP
    Biochemistry; 2006 Aug; 45(30):9032-41. PubMed ID: 16866348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.