BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 17050476)

  • 1. Altered growth and radiosensitivity in neural precursor cells subjected to oxidative stress.
    Limoli CL; Giedzinski E; Baure J; Rola R; Fike JR
    Int J Radiat Biol; 2006 Sep; 82(9):640-7. PubMed ID: 17050476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using superoxide dismutase/catalase mimetics to manipulate the redox environment of neural precursor cells.
    Limoli CL; Giedzinski E; Baure J; Doctrow SR; Rola R; Fike JR
    Radiat Prot Dosimetry; 2006; 122(1-4):228-36. PubMed ID: 17166877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depletion of neural precursor cells after local brain irradiation is due to radiation dose to the parenchyma, not the vasculature.
    Otsuka S; Coderre JA; Micca PL; Morris GM; Hopewell JW; Rola R; Fike JR
    Radiat Res; 2006 May; 165(5):582-91. PubMed ID: 16669713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of oxidative preconditioning on neural progenitor cells.
    Sharma RK; Zhou Q; Netland PA
    Brain Res; 2008 Dec; 1243():19-26. PubMed ID: 18761002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation of neuronal cells to chronic oxidative stress is associated with altered cholesterol and sphingolipid homeostasis and lysosomal function.
    Clement AB; Gamerdinger M; Tamboli IY; Lütjohann D; Walter J; Greeve I; Gimpl G; Behl C
    J Neurochem; 2009 Nov; 111(3):669-82. PubMed ID: 19712059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aldose reductase is implicated in high glucose-induced oxidative stress in mouse embryonic neural stem cells.
    Fu J; Tay SS; Ling EA; Dheen ST
    J Neurochem; 2007 Nov; 103(4):1654-65. PubMed ID: 17727625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive responses to low-dose/low-dose-rate gamma rays in normal human fibroblasts: the role of growth architecture and oxidative metabolism.
    de Toledo SM; Asaad N; Venkatachalam P; Li L; Howell RW; Spitz DR; Azzam EI
    Radiat Res; 2006 Dec; 166(6):849-57. PubMed ID: 17149977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low doses of very low-dose-rate low-LET radiation suppress radiation-induced neoplastic transformation in vitro and induce an adaptive response.
    Elmore E; Lao XY; Kapadia R; Giedzinski E; Limoli C; Redpath JL
    Radiat Res; 2008 Mar; 169(3):311-8. PubMed ID: 18302492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proliferation, oxidative stress and cell death in cells exposed to 872 MHz radiofrequency radiation and oxidants.
    Höytö A; Luukkonen J; Juutilainen J; Naarala J
    Radiat Res; 2008 Aug; 170(2):235-43. PubMed ID: 18666817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress promotes proliferation and dedifferentiation of retina glial cells in vitro.
    Abrahan CE; Insua MF; Politi LE; German OL; Rotstein NP
    J Neurosci Res; 2009 Mar; 87(4):964-77. PubMed ID: 18855938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiation response of neural precursor cells: linking cellular sensitivity to cell cycle checkpoints, apoptosis and oxidative stress.
    Limoli CL; Giedzinski E; Rola R; Otsuka S; Palmer TD; Fike JR
    Radiat Res; 2004 Jan; 161(1):17-27. PubMed ID: 14680400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The importance of Bcl-xL in the survival of human RPE cells.
    Zhang N; Peairs JJ; Yang P; Tyrrell J; Roberts J; Kole R; Jaffe GJ
    Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3846-53. PubMed ID: 17652760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of chronic hypoxic cells to low dose-rate irradiation.
    Pettersen EO; Bjørhovde I; Søvik A; Edin NF; Zachar V; Hole EO; Sandvik JA; Ebbesen P
    Int J Radiat Biol; 2007 May; 83(5):331-45. PubMed ID: 17457758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibiting catalase activity sensitizes 36B10 rat glioma cells to oxidative stress.
    Smith PS; Zhao W; Spitz DR; Robbins ME
    Free Radic Biol Med; 2007 Mar; 42(6):787-97. PubMed ID: 17320761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural stem/progenitor cells initiate the formation of cellular networks that provide neuroprotection by growth factor-modulated antioxidant expression.
    Madhavan L; Ourednik V; Ourednik J
    Stem Cells; 2008 Jan; 26(1):254-65. PubMed ID: 17962704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship among oxidative stress, DNA damage, and proliferative capacity in human corneal endothelium.
    Joyce NC; Zhu CC; Harris DL
    Invest Ophthalmol Vis Sci; 2009 May; 50(5):2116-22. PubMed ID: 19117931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth-related effects of oxidant-induced stress on cultured RPE and choroidal endothelial cells.
    Eichler W; Reiche A; Yafai Y; Lange J; Wiedemann P
    Exp Eye Res; 2008 Oct; 87(4):342-8. PubMed ID: 18640112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation tolerance in the tardigrade Milnesium tardigradum.
    Horikawa DD; Sakashita T; Katagiri C; Watanabe M; Kikawada T; Nakahara Y; Hamada N; Wada S; Funayama T; Higashi S; Kobayashi Y; Okuda T; Kuwabara M
    Int J Radiat Biol; 2006 Dec; 82(12):843-8. PubMed ID: 17178624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. P2Y1 receptor signaling enhances neuroprotection by astrocytes against oxidative stress via IL-6 release in hippocampal cultures.
    Fujita T; Tozaki-Saitoh H; Inoue K
    Glia; 2009 Feb; 57(3):244-57. PubMed ID: 18756525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative stress upregulates ubiquitin proteasome pathway in retinal endothelial cells.
    Fernandes R; Ramalho J; Pereira P
    Mol Vis; 2006 Dec; 12():1526-35. PubMed ID: 17167411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.