These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 17050529)

  • 41. Rotation, structure, and classification of prokaryotic V-ATPase.
    Yokoyama K; Imamura H
    J Bioenerg Biomembr; 2005 Dec; 37(6):405-10. PubMed ID: 16691473
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis.
    Kawasaki-Nishi S; Bowers K; Nishi T; Forgac M; Stevens TH
    J Biol Chem; 2001 Dec; 276(50):47411-20. PubMed ID: 11592965
    [TBL] [Abstract][Full Text] [Related]  

  • 43. F-and V-ATPases in the genus Thermus and related species.
    Radax C; Sigurdsson O; Hreggvidsson GO; Aichinger N; Gruber C; Kristjansson JK; Stan-Lotter H
    Syst Appl Microbiol; 1998 Mar; 21(1):12-22. PubMed ID: 9741106
    [TBL] [Abstract][Full Text] [Related]  

  • 44. ATP hydrolysis and synthesis of a rotary motor V-ATPase from Thermus thermophilus.
    Nakano M; Imamura H; Toei M; Tamakoshi M; Yoshida M; Yokoyama K
    J Biol Chem; 2008 Jul; 283(30):20789-96. PubMed ID: 18492667
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanical inhibition of isolated V
    Kishikawa JI; Nakanishi A; Furuta A; Kato T; Namba K; Tamakoshi M; Mitsuoka K; Yokoyama K
    Elife; 2020 Jul; 9():. PubMed ID: 32639230
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural features and nucleotide-binding capability of the C subunit are integral to the regulation of the eukaryotic V1Vo ATPases.
    GrĂ¼ber G
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):883-5. PubMed ID: 16042619
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The V-type H+ ATPase: molecular structure and function, physiological roles and regulation.
    Beyenbach KW; Wieczorek H
    J Exp Biol; 2006 Feb; 209(Pt 4):577-89. PubMed ID: 16449553
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural and functional features of yeast V-ATPase subunit C.
    Drory O; Nelson N
    Biochim Biophys Acta; 2006; 1757(5-6):297-303. PubMed ID: 16829224
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Torque generation of Enterococcus hirae V-ATPase.
    Ueno H; Minagawa Y; Hara M; Rahman S; Yamato I; Muneyuki E; Noji H; Murata T; Iino R
    J Biol Chem; 2014 Nov; 289(45):31212-23. PubMed ID: 25258315
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Topological characterization of the c, c', and c" subunits of the vacuolar ATPase from the yeast Saccharomyces cerevisiae.
    Flannery AR; Graham LA; Stevens TH
    J Biol Chem; 2004 Sep; 279(38):39856-62. PubMed ID: 15252052
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Crystal structure of the central axis DF complex of the prokaryotic V-ATPase.
    Saijo S; Arai S; Hossain KM; Yamato I; Suzuki K; Kakinuma Y; Ishizuka-Katsura Y; Ohsawa N; Terada T; Shirouzu M; Yokoyama S; Iwata S; Murata T
    Proc Natl Acad Sci U S A; 2011 Dec; 108(50):19955-60. PubMed ID: 22114184
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ATP analogue binding to the A subunit induces conformational changes in the E subunit that involves a disulfide bond formation in plant V-ATPase.
    Kawamura Y; Arakawa K; Maeshima M; Yoshida S
    Eur J Biochem; 2001 May; 268(10):2801-9. PubMed ID: 11358495
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chemomechanical Coupling in Hexameric Protein-Protein Interfaces Harnesses Energy within V-Type ATPases.
    Singharoy A; Chipot C; Moradi M; Schulten K
    J Am Chem Soc; 2017 Jan; 139(1):293-310. PubMed ID: 27936329
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of Vma21p in assembly and transport of the yeast vacuolar ATPase.
    Malkus P; Graham LA; Stevens TH; Schekman R
    Mol Biol Cell; 2004 Nov; 15(11):5075-91. PubMed ID: 15356264
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cloning and sequencing of V-ATPase subunit d from mung bean and its function in passive proton transport.
    Ouyang Z; Li Z; Zhang X
    J Bioenerg Biomembr; 2008 Dec; 40(6):569-76. PubMed ID: 19194790
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Arg-735 of the 100-kDa subunit a of the yeast V-ATPase is essential for proton translocation.
    Kawasaki-Nishi S; Nishi T; Forgac M
    Proc Natl Acad Sci U S A; 2001 Oct; 98(22):12397-402. PubMed ID: 11592980
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Targeting reversible disassembly as a mechanism of controlling V-ATPase activity.
    Kane PM
    Curr Protein Pept Sci; 2012 Mar; 13(2):117-23. PubMed ID: 22044153
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Novel vacuolar H+-ATPase complexes resulting from overproduction of Vma5p and Vma13p.
    Keenan Curtis K; Kane PM
    J Biol Chem; 2002 Jan; 277(4):2716-24. PubMed ID: 11717306
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural bases of physiological functions and roles of the vacuolar H(+)-ATPase.
    Ma B; Xiang Y; An L
    Cell Signal; 2011 Aug; 23(8):1244-56. PubMed ID: 21397012
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tender love and disassembly: How a TLDc domain protein breaks the V-ATPase.
    Wilkens S; Khan MM; Knight K; Oot RA
    Bioessays; 2023 Jul; 45(7):e2200251. PubMed ID: 37183929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.