These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 17050625)

  • 21. The disassembly of the neuromuscular synapse in high-fat diet-induced obese male mice.
    Martinez-Pena Y Valenzuela I; Akaaboune M
    Mol Metab; 2020 Jun; 36():100979. PubMed ID: 32283080
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Agrin and acetylcholine receptors are removed from abandoned synaptic sites at reinnervated frog neuromuscular junctions.
    Stanco AM; Werle MJ
    J Neurobiol; 1997 Dec; 33(7):999-1018. PubMed ID: 9407019
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cholesterol effects on nicotinic acetylcholine receptor: cellular aspects.
    Barrantes FJ
    Subcell Biochem; 2010; 51():467-87. PubMed ID: 20213555
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural agrin: a synaptic stabiliser.
    Ngo ST; Noakes PG; Phillips WD
    Int J Biochem Cell Biol; 2007; 39(5):863-7. PubMed ID: 17126587
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cholesterol and lipid microdomains stabilize the postsynapse at the neuromuscular junction.
    Willmann R; Pun S; Stallmach L; Sadasivam G; Santos AF; Caroni P; Fuhrer C
    EMBO J; 2006 Sep; 25(17):4050-60. PubMed ID: 16932745
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Turnover of acetylcholine receptors at the endplate revisited: novel insights into nerve-dependent behavior.
    Strack S; Khan MM; Wild F; Rall A; Rudolf R
    J Muscle Res Cell Motil; 2015 Dec; 36(6):517-24. PubMed ID: 26276166
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acetylcholinesterase dynamics at the neuromuscular junction of live animals.
    Krejci E; Martinez-Pena y Valenzuela I; Ameziane R; Akaaboune M
    J Biol Chem; 2006 Apr; 281(15):10347-54. PubMed ID: 16455662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accumulation of Nav1 mRNAs at differentiating postsynaptic sites in rat soleus muscles.
    Stocksley MA; Awad SS; Young C; Lightowlers RN; Brenner HR; Slater CR
    Mol Cell Neurosci; 2005 Apr; 28(4):694-702. PubMed ID: 15797716
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synaptogenetic mechanisms controlling postsynaptic differentiation of the neuromuscular junction are nerve-dependent in human and nerve-independent in mouse C2C12 muscle cultures.
    Gajsek N; Jevsek M; Mars T; Mis K; Pirkmajer S; Brecelj J; Grubic Z
    Chem Biol Interact; 2008 Sep; 175(1-3):50-7. PubMed ID: 18691702
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acetylcholine receptors and nerve terminal distribution at the neuromuscular junction of long-term regenerated muscle fibers.
    Marques MJ; Mendes ZT; Minatel E; Santo Neto H
    J Neurocytol; 2005 Dec; 34(6):387-96. PubMed ID: 16902760
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of ACh receptor clustering by the tyrosine phosphatase Shp2.
    Zhao XT; Qian YK; Chan AW; Madhavan R; Peng HB
    Dev Neurobiol; 2007 Nov; 67(13):1789-801. PubMed ID: 17659592
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Silencing rapsyn in vivo decreases acetylcholine receptors and augments sodium channels and secondary postsynaptic membrane folding.
    Martínez-Martínez P; Phernambucq M; Steinbusch L; Schaeffer L; Berrih-Aknin S; Duimel H; Frederik P; Molenaar P; De Baets MH; Losen M
    Neurobiol Dis; 2009 Jul; 35(1):14-23. PubMed ID: 19344765
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Developmental regulation of tyrosine phosphorylation of the nicotinic acetylcholine receptor in Torpedo electrocyte.
    Camus G; Ludosky MA; Bignami F; Marchand S; Cartaud J; Cartaud A
    Mol Cell Neurosci; 1999 Jan; 13(1):69-78. PubMed ID: 10049532
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synapse-glia interactions at the vertebrate neuromuscular junction.
    Feng Z; Koirala S; Ko CP
    Neuroscientist; 2005 Oct; 11(5):503-13. PubMed ID: 16151050
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics of nicotinic acetylcholine receptors and receptor-associated proteins at the vertebrate neuromuscular junction.
    Pires-Oliveira M; Moen D; Akaaboune M
    Curr Alzheimer Res; 2013 Jul; 10(6):631-41. PubMed ID: 23627754
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Loss of Protein Kinase Csnk2b/CK2β at Neuromuscular Junctions Affects Morphology and Dynamics of Aggregated Nicotinic Acetylcholine Receptors, Neuromuscular Transmission, and Synaptic Gene Expression.
    Eiber N; Rehman M; Kravic B; Rudolf R; Sandri M; Hashemolhosseini S
    Cells; 2019 Aug; 8(8):. PubMed ID: 31434353
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calcium/calmodulin kinase II-dependent acetylcholine receptor cycling at the mammalian neuromuscular junction in vivo.
    Martinez-Pena y Valenzuela I; Mouslim C; Akaaboune M
    J Neurosci; 2010 Sep; 30(37):12455-65. PubMed ID: 20844140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid and reversible effects of activity on acetylcholine receptor density at the neuromuscular junction in vivo.
    Akaaboune M; Culican SM; Turney SG; Lichtman JW
    Science; 1999 Oct; 286(5439):503-7. PubMed ID: 10521340
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuromuscular synapses can form in vivo by incorporation of initially aneural postsynaptic specializations.
    Flanagan-Steet H; Fox MA; Meyer D; Sanes JR
    Development; 2005 Oct; 132(20):4471-81. PubMed ID: 16162647
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Super-Resolution Microscopy Reveals a Nanoscale Organization of Acetylcholine Receptors for Trans-Synaptic Alignment at Neuromuscular Synapses.
    York AL; Zheng JQ
    eNeuro; 2017; 4(4):. PubMed ID: 28798955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.