These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 17050685)
1. Three strategically placed hydrogen-bonding residues convert a proton pump into a sensory receptor. Sudo Y; Spudich JL Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16129-34. PubMed ID: 17050685 [TBL] [Abstract][Full Text] [Related]
2. A transporter converted into a sensor, a phototaxis signaling mutant of bacteriorhodopsin at 3.0 Å. Spudich EN; Ozorowski G; Schow EV; Tobias DJ; Spudich JL; Luecke H J Mol Biol; 2012 Jan; 415(3):455-63. PubMed ID: 22123198 [TBL] [Abstract][Full Text] [Related]
3. Early photocycle structural changes in a bacteriorhodopsin mutant engineered to transmit photosensory signals. Sudo Y; Furutani Y; Spudich JL; Kandori H J Biol Chem; 2007 May; 282(21):15550-8. PubMed ID: 17387174 [TBL] [Abstract][Full Text] [Related]
4. Functional importance of the interhelical hydrogen bond between Thr204 and Tyr174 of sensory rhodopsin II and its alteration during the signaling process. Sudo Y; Furutani Y; Kandori H; Spudich JL J Biol Chem; 2006 Nov; 281(45):34239-45. PubMed ID: 16968701 [TBL] [Abstract][Full Text] [Related]
5. The primary structures of the Archaeon Halobacterium salinarium blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein. Zhang W; Brooun A; Mueller MM; Alam M Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8230-5. PubMed ID: 8710852 [TBL] [Abstract][Full Text] [Related]
6. Effects of substitutions D73E, D73N, D103N and V106M on signaling and pH titration of sensory rhodopsin II. Zhu J; Spudich EN; Alam M; Spudich JL Photochem Photobiol; 1997 Dec; 66(6):788-91. PubMed ID: 9421965 [TBL] [Abstract][Full Text] [Related]
7. Proton circulation during the photocycle of sensory rhodopsin II. Sasaki J; Spudich JL Biophys J; 1999 Oct; 77(4):2145-52. PubMed ID: 10512834 [TBL] [Abstract][Full Text] [Related]
8. FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor. Bergo V; Spudich EN; Scott KL; Spudich JL; Rothschild KJ Biochemistry; 2000 Mar; 39(11):2823-30. PubMed ID: 10715101 [TBL] [Abstract][Full Text] [Related]
9. Constitutive activity in chimeras and deletions localize sensory rhodopsin II/HtrII signal relay to the membrane-inserted domain. Sasaki J; Nara T; Spudich EN; Spudich JL Mol Microbiol; 2007 Dec; 66(6):1321-30. PubMed ID: 17986191 [TBL] [Abstract][Full Text] [Related]
10. A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties. Sudo Y; Ihara K; Kobayashi S; Suzuki D; Irieda H; Kikukawa T; Kandori H; Homma M J Biol Chem; 2011 Feb; 286(8):5967-76. PubMed ID: 21135094 [TBL] [Abstract][Full Text] [Related]
11. Key determinants for signaling in the sensory rhodopsin II/transducer complex are different between Halobacterium salinarum and Natronomonas pharaonis. Matsunami-Nakamura R; Tamogami J; Takeguchi M; Ishikawa J; Kikukawa T; Kamo N; Nara T FEBS Lett; 2023 Sep; 597(18):2334-2344. PubMed ID: 37532685 [TBL] [Abstract][Full Text] [Related]
12. Constitutive signaling by the phototaxis receptor sensory rhodopsin II from disruption of its protonated Schiff base-Asp-73 interhelical salt bridge. Spudich EN; Zhang W; Alam M; Spudich JL Proc Natl Acad Sci U S A; 1997 May; 94(10):4960-5. PubMed ID: 9144172 [TBL] [Abstract][Full Text] [Related]
13. The cytoplasmic membrane-proximal domain of the HtrII transducer interacts with the E-F loop of photoactivated Natronomonas pharaonis sensory rhodopsin II. Yang CS; Sineshchekov O; Spudich EN; Spudich JL J Biol Chem; 2004 Oct; 279(41):42970-6. PubMed ID: 15262967 [TBL] [Abstract][Full Text] [Related]
14. X-ray structure of sensory rhodopsin II at 2.1-A resolution. Royant A; Nollert P; Edman K; Neutze R; Landau EM; Pebay-Peyroula E; Navarro J Proc Natl Acad Sci U S A; 2001 Aug; 98(18):10131-6. PubMed ID: 11504917 [TBL] [Abstract][Full Text] [Related]
15. Signal relay from sensory rhodopsin I to the cognate transducer HtrI: assessing the critical change in hydrogen-bonding between Tyr-210 and Asn-53. Radu I; Budyak IL; Hoomann T; Kim YJ; Engelhard M; Labahn J; Büldt G; Heberle J; Schlesinger R Biophys Chem; 2010 Aug; 150(1-3):23-8. PubMed ID: 20303644 [TBL] [Abstract][Full Text] [Related]
16. X-ray structure analysis of bacteriorhodopsin at 1.3 Å resolution. Hasegawa N; Jonotsuka H; Miki K; Takeda K Sci Rep; 2018 Sep; 8(1):13123. PubMed ID: 30177765 [TBL] [Abstract][Full Text] [Related]
17. Importance of specific hydrogen bonds of archaeal rhodopsins for the binding to the transducer protein. Sudo Y; Yamabi M; Kato S; Hasegawa C; Iwamoto M; Shimono K; Kamo N J Mol Biol; 2006 Apr; 357(4):1274-82. PubMed ID: 16483604 [TBL] [Abstract][Full Text] [Related]
18. The specificity of interaction of archaeal transducers with their cognate sensory rhodopsins is determined by their transmembrane helices. Zhang XN; Zhu J; Spudich JL Proc Natl Acad Sci U S A; 1999 Feb; 96(3):857-62. PubMed ID: 9927658 [TBL] [Abstract][Full Text] [Related]
19. Proline residues in transmembrane alpha helices affect the folding of bacteriorhodopsin. Lu H; Marti T; Booth PJ J Mol Biol; 2001 Apr; 308(2):437-46. PubMed ID: 11327778 [TBL] [Abstract][Full Text] [Related]
20. HAMP domain signal relay mechanism in a sensory rhodopsin-transducer complex. Wang J; Sasaki J; Tsai AL; Spudich JL J Biol Chem; 2012 Jun; 287(25):21316-25. PubMed ID: 22511775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]