These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Modeling arthropod filiform hair motion using the penalty immersed boundary method. Heys JJ; Gedeon T; Knott BC; Kim Y J Biomech; 2008; 41(5):977-84. PubMed ID: 18255073 [TBL] [Abstract][Full Text] [Related]
5. Interaction between arthropod filiform hairs in a fluid environment. Cummins B; Gedeon T; Klapper I; Cortez R J Theor Biol; 2007 Jul; 247(2):266-80. PubMed ID: 17434184 [TBL] [Abstract][Full Text] [Related]
6. Biomechanical Analysis of a Filiform Mechanosensory Hair Socket of Crickets. Joshi K; Mian A; Miller J J Biomech Eng; 2016 Aug; 138(8):. PubMed ID: 27322099 [TBL] [Abstract][Full Text] [Related]
7. Textbook cricket goes to the field: the ecological scene of the neuroethological play. Dangles O; Casas J; Coolen I J Exp Biol; 2006 Feb; 209(Pt 3):393-8. PubMed ID: 16424089 [TBL] [Abstract][Full Text] [Related]
8. Variation in morphology and performance of predator-sensing system in wild cricket populations. Dangles O; Magal C; Pierre D; Olivier A; Casas J J Exp Biol; 2005 Feb; 208(Pt 3):461-8. PubMed ID: 15671334 [TBL] [Abstract][Full Text] [Related]
9. Danger detection and escape behaviour in wood crickets. Dupuy F; Casas J; Body M; Lazzari CR J Insect Physiol; 2011 Jul; 57(7):865-71. PubMed ID: 21439965 [TBL] [Abstract][Full Text] [Related]
10. Response of cricket and spider motion-sensing hairs to airflow pulsations. Kant R; Humphrey JA J R Soc Interface; 2009 Nov; 6(40):1047-64. PubMed ID: 19324674 [TBL] [Abstract][Full Text] [Related]
11. Relative contributions of organ shape and receptor arrangement to the design of cricket's cercal system. Dangles O; Steinmann T; Pierre D; Vannier F; Casas J J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Jul; 194(7):653-63. PubMed ID: 18553087 [TBL] [Abstract][Full Text] [Related]
12. Viscosity-mediated motion coupling between pairs of trichobothria on the leg of the spider Cupiennius salei. Bathellier B; Barth FG; Albert JT; Humphrey JA J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Aug; 191(8):733-46. PubMed ID: 16041533 [TBL] [Abstract][Full Text] [Related]
14. The morphological heterogeneity of cricket flow-sensing hairs conveys the complex flow signature of predator attacks. Steinmann T; Casas J J R Soc Interface; 2017 Jun; 14(131):. PubMed ID: 28637919 [TBL] [Abstract][Full Text] [Related]
15. Pulsatile flow past a cylinder: an experimental model of flow in an artificial lung. Lin YC; Brant DO; Bartlett RH; Hirschl RB; Bull JL ASAIO J; 2006; 52(6):614-23. PubMed ID: 17117049 [TBL] [Abstract][Full Text] [Related]
16. Visualization of ensemble activity patterns of mechanosensory afferents in the cricket cercal sensory system with calcium imaging. Ogawa H; Cummins GI; Jacobs GA; Miller JP J Neurobiol; 2006 Feb; 66(3):293-307. PubMed ID: 16329129 [TBL] [Abstract][Full Text] [Related]
18. Antennule morphology and flicking kinematics facilitate odor sampling by the spiny lobster, Panulirus argus. Reidenbach MA; George N; Koehl MA J Exp Biol; 2008 Sep; 211(Pt 17):2849-58. PubMed ID: 18723544 [TBL] [Abstract][Full Text] [Related]
19. Towards a high-resolution flow camera using artificial hair sensor arrays for flow pattern observations. Dagamseh AM; Wiegerink RJ; Lammerink TS; Krijnen GJ Bioinspir Biomim; 2012 Dec; 7(4):046009. PubMed ID: 22954888 [TBL] [Abstract][Full Text] [Related]
20. A model of filiform hair distribution on the cricket cercus. Heys JJ; Rajaraman PK; Gedeon T; Miller JP PLoS One; 2012; 7(10):e46588. PubMed ID: 23056357 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]