BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 1705116)

  • 1. The use of thioglycollate to demonstrate DNA AP (apurinic/apyrimidinic-site) lyase activities. Biological consequences of thiol addition to the 5' product of a beta-elimination reaction at an AP site in DNA.
    Bricteux-Grégoire S; Verly WG
    Biochem J; 1991 Feb; 273 ( Pt 3)(Pt 3):777-82. PubMed ID: 1705116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of thioglycolate to distinguish between 3' AP (apurinic/apyrimidinic) endonucleases and AP lyases.
    Bricteux-Grégoire S; Verly WG
    Nucleic Acids Res; 1989 Aug; 17(15):6269-82. PubMed ID: 2475855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Escherichia coli endonuclease III is not an endonuclease but a beta-elimination catalyst.
    Bailly V; Verly WG
    Biochem J; 1987 Mar; 242(2):565-72. PubMed ID: 2439070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repair of apurinic/apyrimidinic sites by UV damage endonuclease; a repair protein for UV and oxidative damage.
    Kanno S; Iwai S; Takao M; Yasui A
    Nucleic Acids Res; 1999 Aug; 27(15):3096-103. PubMed ID: 10454605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification of a mammalian homologue of Escherichia coli endonuclease III: identification of a bovine pyrimidine hydrate-thymine glycol DNAse/AP lyase by irreversible cross linking to a thymine glycol-containing oligoxynucleotide.
    Hilbert TP; Boorstein RJ; Kung HC; Bolton PH; Xing D; Cunningham RP; Teebor GW
    Biochemistry; 1996 Feb; 35(8):2505-11. PubMed ID: 8611553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The multiple activities of Escherichia coli endonuclease IV and the extreme lability of 5'-terminal base-free deoxyribose 5-phosphates.
    Bailly V; Verly WG
    Biochem J; 1989 May; 259(3):761-8. PubMed ID: 2471513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replacing tryptophan-128 of T4 endonuclease V with a serine residue results in decreased enzymatic activity in vitro and in vivo.
    Valerie K
    Nucleic Acids Res; 1995 Sep; 23(18):3764-70. PubMed ID: 7479008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Escherichia coli MutY protein has both N-glycosylase and apurinic/apyrimidinic endonuclease activities on A.C and A.G mispairs.
    Tsai-Wu JJ; Liu HF; Lu AL
    Proc Natl Acad Sci U S A; 1992 Sep; 89(18):8779-83. PubMed ID: 1382298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective inhibition by methoxyamine of the apurinic/apyrimidinic endonuclease activity associated with pyrimidine dimer-DNA glycosylases from Micrococcus luteus and bacteriophage T4.
    Liuzzi M; Weinfeld M; Paterson MC
    Biochemistry; 1987 Jun; 26(12):3315-21. PubMed ID: 2443160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrimidine dimer-DNA glycosylases: studies on bacteriophage T4-infected and on uninfected Escherichia coli.
    Bonura T; Radany EH; McMillan S; Love JD; Schultz RA; Edenberg HJ; Friedberg EC
    Biochimie; 1982; 64(8-9):643-54. PubMed ID: 6753948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human placental apurinic/apyrimidinic endonuclease. Mechanism of action.
    Grafstrom RH; Shaper NL; Grossman L
    J Biol Chem; 1982 Nov; 257(22):13459-64. PubMed ID: 6183261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The repair of pyrimidine dimers via a DNA-glycosylase mechanism.
    Grafstrom RH
    Basic Life Sci; 1986; 38():281-6. PubMed ID: 2427065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escherichia coli apurinic-apyrimidinic endonucleases enhance the turnover of the adenine glycosylase MutY with G:A substrates.
    Pope MA; Porello SL; David SS
    J Biol Chem; 2002 Jun; 277(25):22605-15. PubMed ID: 11960995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of DNA strand cleavage by enzymes that act at abasic sites in DNA.
    Deutsch WA; Yacoub A
    Methods Mol Biol; 1999; 113():281-8. PubMed ID: 10443427
    [No Abstract]   [Full Text] [Related]  

  • 15. Repair of AP sites in DNA.
    Verly WG
    Biochimie; 1982; 64(8-9):603-5. PubMed ID: 6814509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AP lyases and dRPases: commonality of mechanism.
    Piersen CE; McCullough AK; Lloyd RS
    Mutat Res; 2000 Feb; 459(1):43-53. PubMed ID: 10677682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The recognition of DNA containing an AP site by E.coli endonuclease VI (exonuclease III).
    Shida T; Noda M; Sekiguchi J
    Nucleic Acids Symp Ser; 1995; (34):87-8. PubMed ID: 8841565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective inhibition by harmane of the apurinic apyrimidinic endonuclease activity of phage T4-induced UV endonuclease.
    Warner HR; Persson ML; Bensen RJ; Mosbaugh DW; Linn S
    Nucleic Acids Res; 1981 Nov; 9(22):6083-92. PubMed ID: 6273822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA repair pathway in alkylated human cells: apurinic/apyrimidinic intermediate resolved by Escherichia coli endonuclease IV-coupled alkaline elution.
    Moran MF; Ebisuzaki K
    Carcinogenesis; 1986 Jul; 7(7):1231-4. PubMed ID: 2424629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the catalytic mechanism of five DNA glycosylases. Probing for enzyme-DNA imino intermediates.
    Sun B; Latham KA; Dodson ML; Lloyd RS
    J Biol Chem; 1995 Aug; 270(33):19501-8. PubMed ID: 7642635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.