BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

766 related articles for article (PubMed ID: 17051250)

  • 21. A tightly regulated and reversibly inducible siRNA expression system for conditional RNAi-mediated gene silencing in mammalian cells.
    Wu RH; Cheng TL; Lo SR; Hsu HC; Hung CF; Teng CF; Wu MP; Tsai WH; Chang WT
    J Gene Med; 2007 Jul; 9(7):620-34. PubMed ID: 17486668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Herpes simplex virus RNAi and neprilysin gene transfer vectors reduce accumulation of Alzheimer's disease-related amyloid-beta peptide in vivo.
    Hong CS; Goins WF; Goss JR; Burton EA; Glorioso JC
    Gene Ther; 2006 Jul; 13(14):1068-79. PubMed ID: 16541122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting HSV amplicon vectors.
    Grandi P; Spear M; Breakefield XO; Wang S
    Methods; 2004 Jun; 33(2):179-86. PubMed ID: 15121173
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative analysis of genomic HSV vectors for gene delivery to motor neurons following peripheral inoculation in vivo.
    Perez MC; Hunt SP; Coffin RS; Palmer JA
    Gene Ther; 2004 Jul; 11(13):1023-32. PubMed ID: 15164091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimization of an siRNA-expression system with an improved hairpin and its significant suppressive effects in mammalian cells.
    Miyagishi M; Sumimoto H; Miyoshi H; Kawakami Y; Taira K
    J Gene Med; 2004 Jul; 6(7):715-23. PubMed ID: 15241778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intracellular-diced dsRNA has enhanced efficacy for silencing HCV RNA and overcomes variation in the viral genotype.
    Watanabe T; Sudoh M; Miyagishi M; Akashi H; Arai M; Inoue K; Taira K; Yoshiba M; Kohara M
    Gene Ther; 2006 Jun; 13(11):883-92. PubMed ID: 16496015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Drug delivery of siRNA therapeutics: potentials and limits of nanosystems.
    Reischl D; Zimmer A
    Nanomedicine; 2009 Mar; 5(1):8-20. PubMed ID: 18640078
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effective gene suppression using small interfering RNA in hard-to-transfect human T cells.
    Yin J; Ma Z; Selliah N; Shivers DK; Cron RQ; Finkel TH
    J Immunol Methods; 2006 May; 312(1-2):1-11. PubMed ID: 16603179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complete knockdown of CCR5 by lentiviral vector-expressed siRNAs and protection of transgenic macrophages against HIV-1 infection.
    Anderson J; Akkina R
    Gene Ther; 2007 Sep; 14(17):1287-97. PubMed ID: 17597795
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interference of porcine reproductive and respiratory syndrome virus replication on MARC-145 cells using DNA-based short interfering RNAs.
    He YX; Hua RH; Zhou YJ; Qiu HJ; Tong GZ
    Antiviral Res; 2007 May; 74(2):83-91. PubMed ID: 16730075
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selection and validation of optimal siRNA target sites for RNAi-mediated gene silencing.
    Luo Q; Kang Q; Song WX; Luu HH; Luo X; An N; Luo J; Deng ZL; Jiang W; Yin H; Chen J; Sharff KA; Tang N; Bennett E; Haydon RC; He TC
    Gene; 2007 Jun; 395(1-2):160-9. PubMed ID: 17449199
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo gene transfer to the rat retina using herpes simplex virus type 1 (HSV-1)-based amplicon vectors.
    Fraefel C; Mendes-Madeira A; Mabon O; Lefebvre A; Le Meur G; Ackermann M; Moullier P; Rolling F
    Gene Ther; 2005 Aug; 12(16):1283-8. PubMed ID: 15889134
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Delivery of herpes simplex virus vectors through liposome formulation.
    Fu X; Zhang X
    Mol Ther; 2001 Nov; 4(5):447-53. PubMed ID: 11708881
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Maintaining inhibition: siRNA double expression vectors against coxsackieviral RNAs.
    Schubert S; Grunert HP; Zeichhardt H; Werk D; Erdmann VA; Kurreck J
    J Mol Biol; 2005 Feb; 346(2):457-65. PubMed ID: 15670596
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of hepatitis C virus gene expression by small interfering RNAs using a tri-cistronic full-length viral replicon and a transient mouse model.
    Kim M; Shin D; Kim SI; Park M
    Virus Res; 2006 Dec; 122(1-2):1-10. PubMed ID: 16979254
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation of stable retrovirus packaging cell lines after transduction with herpes simplex virus hybrid amplicon vectors.
    Sena-Esteves M; Hampl JA; Camp SM; Breakefield XO
    J Gene Med; 2002; 4(3):229-39. PubMed ID: 12112640
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel methods for expressing RNA interference in human cells.
    Sano M; Kato Y; Akashi H; Miyagishi M; Taira K
    Methods Enzymol; 2005; 392():97-112. PubMed ID: 15644177
    [TBL] [Abstract][Full Text] [Related]  

  • 38. HIV-1-specific RNA interference.
    Boden D; Pusch O; Ramratnam B
    Curr Opin Mol Ther; 2004 Aug; 6(4):373-80. PubMed ID: 15468596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Establishment of a novel foreign gene delivery system combining an HSV amplicon with an attenuated replication-competent virus, HSV-1 HF10.
    Zhang L; Daikoku T; Ohtake K; Ohtsuka J; Nawa A; Kudoh A; Iwahori S; Isomura H; Nishiyama Y; Tsurumi T
    J Virol Methods; 2006 Nov; 137(2):177-83. PubMed ID: 16854473
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Materializing the potential of small interfering RNA via a tumor-targeting nanodelivery system.
    Pirollo KF; Rait A; Zhou Q; Hwang SH; Dagata JA; Zon G; Hogrefe RI; Palchik G; Chang EH
    Cancer Res; 2007 Apr; 67(7):2938-43. PubMed ID: 17409398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.