These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

459 related articles for article (PubMed ID: 17052133)

  • 41. Neuromuscular fatigue and recovery in women at different ages during heavy resistance loading.
    Häkkinen K
    Electromyogr Clin Neurophysiol; 1995 Nov; 35(7):403-13. PubMed ID: 8549431
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Medial Gastrocnemius Muscle Architecture Is Altered After Exhaustive Stretch-Shortening Cycle Exercise.
    Kositsky A; Kidgell DJ; Avela J
    Front Physiol; 2019; 10():1511. PubMed ID: 31920715
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Leg immersion in warm water, stretch-shortening exercise, and exercise-induced muscle damage.
    Skurvydas A; Kamandulis S; Stanislovaitis A; Streckis V; Mamkus G; Drazdauskas A
    J Athl Train; 2008; 43(6):592-9. PubMed ID: 19030137
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fatigue effects on muscle excitability.
    Hortobágyi T; Tracy J; Hamilton G; Lambert J
    Int J Sports Med; 1996 Aug; 17(6):409-14. PubMed ID: 8884414
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of single bout versus repeated bouts of stretching on muscle recovery following eccentric exercise.
    Torres R; Pinho F; Duarte JA; Cabri JM
    J Sci Med Sport; 2013 Nov; 16(6):583-8. PubMed ID: 24139151
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Changes in the soleus muscle architecture after exhausting stretch-shortening cycle exercise in humans.
    Ishikawa M; Dousset E; Avela J; Kyröläinen H; Kallio J; Linnamo V; Kuitunen S; Nicol C; Komi PV
    Eur J Appl Physiol; 2006 Jun; 97(3):298-306. PubMed ID: 16770465
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular adaptations of voltage-gated sodium ion channel related proteins after fatiguing stretch-shortening cycle exercise.
    Piitulainen H; Kivelä R; Komi P; Kainulainen H; Kyröläinen H
    Scand J Med Sci Sports; 2008 Oct; 18(5):636-42. PubMed ID: 18208422
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neuromuscular changes after long-lasting mechanically and electrically elicited fatigue.
    Avela J; Kyröläinen H; Komi PV
    Eur J Appl Physiol; 2001 Aug; 85(3-4):317-25. PubMed ID: 11560086
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Strength athletes are capable to produce greater muscle activation and neural fatigue during high-intensity resistance exercise than nonathletes.
    Ahtiainen JP; Häkkinen K
    J Strength Cond Res; 2009 Jul; 23(4):1129-34. PubMed ID: 19528869
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The decrease in electrically evoked force production is delayed by a previous bout of stretch-shortening cycle exercise.
    Kamandulis S; Skurvydas A; Masiulis N; Mamkus G; Westerblad H
    Acta Physiol (Oxf); 2010 Jan; 198(1):91-8. PubMed ID: 19769636
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of stretch-shortening cycle fatigue protocol on lower limb asymmetry and muscle soreness in judo athletes.
    Kons RL; Orssatto LBDR; Sakugawa RL; da Silva Junior JN; Diefenthaeler F; Detanico D
    Sports Biomech; 2023 Sep; 22(9):1079-1094. PubMed ID: 32644009
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanisms of in vivo muscle fatigue in humans: investigating age-related fatigue resistance with a computational model.
    Callahan DM; Umberger BR; Kent JA
    J Physiol; 2016 Jun; 594(12):3407-21. PubMed ID: 26824934
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanical efficiency of locomotion in females during different kinds of muscle action.
    Kyröläinen H; Komi PV; Oksanen P; Häkkinen K; Cheng S; Kim DH
    Eur J Appl Physiol Occup Physiol; 1990; 61(5-6):446-52. PubMed ID: 2079065
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Potentiation of concentric force and acceleration only occurs early during the stretch-shortening cycle.
    McCarthy JP; Wood DS; Bolding MS; Roy JL; Hunter GR
    J Strength Cond Res; 2012 Sep; 26(9):2345-55. PubMed ID: 22692115
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Vibration Therapy Is No More Effective Than the Standard Practice of Massage and Stretching for Promoting Recovery From Muscle Damage After Eccentric Exercise.
    Fuller JT; Thomson RL; Howe PR; Buckley JD
    Clin J Sport Med; 2015 Jul; 25(4):332-7. PubMed ID: 25290104
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Disturbed motor control of rhythmic movement at 2 h and delayed after maximal eccentric actions.
    Bottas R; Miettunen K; Komi PV; Linnamo V
    J Electromyogr Kinesiol; 2010 Aug; 20(4):608-18. PubMed ID: 20064728
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fatigue alters the biomechanical contribution of lower extremity joints during a stretch-shortening cycle task.
    Sun X; Xia R; Zhang X; Luo Z; Fu W
    Acta Bioeng Biomech; 2019; 21(2):11-19. PubMed ID: 31741477
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of previous concentric exercise on eccentric exercise-induced muscle damage.
    Nosaka K; Clarkson PM
    J Sports Sci; 1997 Oct; 15(5):477-83. PubMed ID: 9386205
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Skeletal muscle function: role of ionic changes in fatigue, damage and disease.
    Allen DG
    Clin Exp Pharmacol Physiol; 2004 Aug; 31(8):485-93. PubMed ID: 15298539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.