These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 17052154)

  • 1. A spiking neuron model of cortical correlates of sensorineural hearing loss: Spontaneous firing, synchrony, and tinnitus.
    Dominguez M; Becker S; Bruce I; Read H
    Neural Comput; 2006 Dec; 18(12):2942-58. PubMed ID: 17052154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: a computational model.
    Schaette R; Kempter R
    Eur J Neurosci; 2006 Jun; 23(11):3124-38. PubMed ID: 16820003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting tinnitus pitch from patients' audiograms with a computational model for the development of neuronal hyperactivity.
    Schaette R; Kempter R
    J Neurophysiol; 2009 Jun; 101(6):3042-52. PubMed ID: 19357344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional and structural aspects of tinnitus-related enhancement and suppression of auditory cortex activity.
    Diesch E; Andermann M; Flor H; Rupp A
    Neuroimage; 2010 May; 50(4):1545-59. PubMed ID: 20114077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical tonotopic map reorganization and its implications for treatment of tinnitus.
    Eggermont JJ
    Acta Otolaryngol Suppl; 2006 Dec; (556):9-12. PubMed ID: 17114136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of hyperactivity after hearing loss in a computational model of the dorsal cochlear nucleus depends on neuron response type.
    Schaette R; Kempter R
    Hear Res; 2008 Jun; 240(1-2):57-72. PubMed ID: 18396381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency organization of the 40-Hz auditory steady-state response in normal hearing and in tinnitus.
    Wienbruch C; Paul I; Weisz N; Elbert T; Roberts LE
    Neuroimage; 2006 Oct; 33(1):180-94. PubMed ID: 16901722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tinnitus. I: Auditory mechanisms: a model for tinnitus and hearing impairment.
    Hazell JW; Jastreboff PJ
    J Otolaryngol; 1990 Feb; 19(1):1-5. PubMed ID: 2179573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of hearing aid fitting on the perceptual characteristics of tinnitus.
    Moffat G; Adjout K; Gallego S; Thai-Van H; Collet L; Noreña AJ
    Hear Res; 2009 Aug; 254(1-2):82-91. PubMed ID: 19409969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of salicylate application on the spontaneous activity in brain slices of the mouse cochlear nucleus, medial geniculate body and primary auditory cortex.
    Basta D; Goetze R; Ernst A
    Hear Res; 2008 Jun; 240(1-2):42-51. PubMed ID: 18372130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical network modeling: analytical methods for firing rates and some properties of networks of LIF neurons.
    Tuckwell HC
    J Physiol Paris; 2006; 100(1-3):88-99. PubMed ID: 17064883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid increases of gamma power in the auditory cortex following noise trauma in humans.
    Ortmann M; Müller N; Schlee W; Weisz N
    Eur J Neurosci; 2011 Feb; 33(3):568-75. PubMed ID: 21198988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tinnitus behavior and hearing function correlate with the reciprocal expression patterns of BDNF and Arg3.1/arc in auditory neurons following acoustic trauma.
    Tan J; Rüttiger L; Panford-Walsh R; Singer W; Schulze H; Kilian SB; Hadjab S; Zimmermann U; Köpschall I; Rohbock K; Knipper M
    Neuroscience; 2007 Mar; 145(2):715-26. PubMed ID: 17275194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tinnitus-related dissociation between cortical and subcortical neural activity in humans with mild to moderate sensorineural hearing loss.
    Boyen K; de Kleine E; van Dijk P; Langers DR
    Hear Res; 2014 Jun; 312():48-59. PubMed ID: 24631963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlated neural activity as the driving force for functional changes in auditory cortex.
    Eggermont JJ
    Hear Res; 2007 Jul; 229(1-2):69-80. PubMed ID: 17296278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Midazolam reverses salicylate-induced changes in brain-derived neurotrophic factor and arg3.1 expression: implications for tinnitus perception and auditory plasticity.
    Panford-Walsh R; Singer W; Rüttiger L; Hadjab S; Tan J; Geisler HS; Zimmermann U; Köpschall I; Rohbock K; Vieljans A; Oestreicher E; Knipper M
    Mol Pharmacol; 2008 Sep; 74(3):595-604. PubMed ID: 18524887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kindling changes burst firing, neural synchrony and tonotopic organization of cat primary auditory cortex.
    Valentine PA; Teskey GC; Eggermont JJ
    Cereb Cortex; 2004 Aug; 14(8):827-39. PubMed ID: 15054056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurophysiology and neuroanatomy of pitch perception: auditory cortex.
    Tramo MJ; Cariani PA; Koh CK; Makris N; Braida LD
    Ann N Y Acad Sci; 2005 Dec; 1060():148-74. PubMed ID: 16597761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced sound perception by widespread-onset neuronal responses in auditory cortex.
    Hoshino O
    Neural Comput; 2007 Dec; 19(12):3310-34. PubMed ID: 17970655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous firing rate changes in cat primary auditory cortex following long-term exposure to non-traumatic noise: tinnitus without hearing loss?
    Munguia R; Pienkowski M; Eggermont JJ
    Neurosci Lett; 2013 Jun; 546():46-50. PubMed ID: 23648387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.