BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 17052204)

  • 1. The importance of redox shuttles to pancreatic beta-cell energy metabolism and function.
    Bender K; Newsholme P; Brennan L; Maechler P
    Biochem Soc Trans; 2006 Nov; 34(Pt 5):811-4. PubMed ID: 17052204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The malate-aspartate NADH shuttle member Aralar1 determines glucose metabolic fate, mitochondrial activity, and insulin secretion in beta cells.
    Rubi B; del Arco A; Bartley C; Satrustegui J; Maechler P
    J Biol Chem; 2004 Dec; 279(53):55659-66. PubMed ID: 15494407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial Superoxide Production Decreases on Glucose-Stimulated Insulin Secretion in Pancreatic β Cells Due to Decreasing Mitochondrial Matrix NADH/NAD
    Plecitá-Hlavatá L; Engstová H; Holendová B; Tauber J; Špaček T; Petrásková L; Křen V; Špačková J; Gotvaldová K; Ježek J; Dlasková A; Smolková K; Ježek P
    Antioxid Redox Signal; 2020 Oct; 33(12):789-815. PubMed ID: 32517485
    [No Abstract]   [Full Text] [Related]  

  • 4. Inhibition of the malate-aspartate shuttle in mouse pancreatic islets abolishes glucagon secretion without affecting insulin secretion.
    Stamenkovic JA; Andersson LE; Adriaenssens AE; Bagge A; Sharoyko VV; Gribble F; Reimann F; Wollheim CB; Mulder H; Spégel P
    Biochem J; 2015 May; 468(1):49-63. PubMed ID: 25731850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silencing of the mitochondrial NADH shuttle component aspartate-glutamate carrier AGC1/Aralar1 in INS-1E cells and rat islets.
    Casimir M; Rubi B; Frigerio F; Chaffard G; Maechler P
    Biochem J; 2009 Dec; 424(3):459-66. PubMed ID: 19764902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools.
    McKenna MC; Waagepetersen HS; Schousboe A; Sonnewald U
    Biochem Pharmacol; 2006 Feb; 71(4):399-407. PubMed ID: 16368075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Malate-aspartate shuttle, cytoplasmic NADH redox potential, and energetics in vascular smooth muscle.
    Barron JT; Gu L; Parrillo JE
    J Mol Cell Cardiol; 1998 Aug; 30(8):1571-9. PubMed ID: 9737943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mathematical model of the mitochondrial NADH shuttles and anaplerosis in the pancreatic beta-cell.
    Westermark PO; Kotaleski JH; Björklund A; Grill V; Lansner A
    Am J Physiol Endocrinol Metab; 2007 Feb; 292(2):E373-93. PubMed ID: 16849626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Role of the NADH shuttle system in glucose-induced insulin secretion].
    Eto K; Kadowaki T
    Nihon Rinsho; 1999 Mar; 57(3):503-14. PubMed ID: 10199125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies.
    Zhou L; Stanley WC; Saidel GM; Yu X; Cabrera ME
    J Physiol; 2005 Dec; 569(Pt 3):925-37. PubMed ID: 16223766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of the mitochondrial oxidation of (-)-palmitylcarnitine by the malate-aspartate and alpha-glycerophosphate shuttles.
    Lumeng L; Bremer J; Davis EJ
    J Biol Chem; 1976 Jan; 251(2):277-84. PubMed ID: 1245472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of the malate-aspartate NADH shuttle member Aralar1 in the clonal beta-cell line BRIN-BD11 enhances amino-acid-stimulated insulin secretion and cell metabolism.
    Bender K; Maechler P; McClenaghan NH; Flatt PR; Newsholme P
    Clin Sci (Lond); 2009 Sep; 117(9):321-30. PubMed ID: 19344310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion.
    Eto K; Tsubamoto Y; Terauchi Y; Sugiyama T; Kishimoto T; Takahashi N; Yamauchi N; Kubota N; Murayama S; Aizawa T; Akanuma Y; Aizawa S; Kasai H; Yazaki Y; Kadowaki T
    Science; 1999 Feb; 283(5404):981-5. PubMed ID: 9974390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm.
    Matschinsky FM
    Diabetes; 1996 Feb; 45(2):223-41. PubMed ID: 8549869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.
    Greenhouse WV; Lehninger AL
    Cancer Res; 1977 Nov; 37(11):4173-81. PubMed ID: 198130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing equivalent shuttles in developing porcine myocardium: enhanced capacity in the newborn heart.
    Scholz TD; Koppenhafer SL
    Pediatr Res; 1995 Aug; 38(2):221-7. PubMed ID: 7478820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired metabolism-secretion coupling in pancreatic beta-cells: role of determinants of mitochondrial ATP production.
    Fujimoto S; Nabe K; Takehiro M; Shimodahira M; Kajikawa M; Takeda T; Mukai E; Inagaki N; Seino Y
    Diabetes Res Clin Pract; 2007 Sep; 77 Suppl 1():S2-10. PubMed ID: 17449130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial metabolism sets the maximal limit of fuel-stimulated insulin secretion in a model pancreatic beta cell: a survey of four fuel secretagogues.
    Antinozzi PA; Ishihara H; Newgard CB; Wollheim CB
    J Biol Chem; 2002 Apr; 277(14):11746-55. PubMed ID: 11821387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NNT reverse mode of operation mediates glucose control of mitochondrial NADPH and glutathione redox state in mouse pancreatic β-cells.
    Santos LRB; Muller C; de Souza AH; Takahashi HK; Spégel P; Sweet IR; Chae H; Mulder H; Jonas JC
    Mol Metab; 2017 Jun; 6(6):535-547. PubMed ID: 28580284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate-dependent utilization of the glycerol 3-phosphate or malate/aspartate redox shuttles by Ehrlich ascites cells.
    Grivell AR; Korpelainen EI; Williams CJ; Berry MN
    Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):665-71. PubMed ID: 7654209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.