These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 17052219)

  • 21. Experience-dependent changes in NMDA receptor composition at mature central synapses.
    Kopp C; Longordo F; Lüthi A
    Neuropharmacology; 2007 Jul; 53(1):1-9. PubMed ID: 17499817
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synaptic trafficking of glutamate receptors by MAGUK scaffolding proteins.
    Elias GM; Nicoll RA
    Trends Cell Biol; 2007 Jul; 17(7):343-52. PubMed ID: 17644382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ionotropic glutamate receptor activated by N-methyl-D-aspartate: a key molecule of conscious life.
    Lareo LR; Corredor C
    Med Hypotheses; 2004; 63(2):245-9. PubMed ID: 15236783
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurement and characteristics of neurotransmitter receptor surface trafficking (Review).
    Groc L; Choquet D
    Mol Membr Biol; 2008 May; 25(4):344-52. PubMed ID: 18446620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New targets for pharmacological intervention in the glutamatergic synapse.
    Gardoni F; Di Luca M
    Eur J Pharmacol; 2006 Sep; 545(1):2-10. PubMed ID: 16831414
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glutamate receptor plasticity at excitatory synapses in the brain.
    Genoux D; Montgomery JM
    Clin Exp Pharmacol Physiol; 2007 Oct; 34(10):1058-63. PubMed ID: 17714094
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Xenon attenuates excitatory synaptic transmission in the rodent prefrontal cortex and spinal cord dorsal horn.
    Haseneder R; Kratzer S; Kochs E; Mattusch C; Eder M; Rammes G
    Anesthesiology; 2009 Dec; 111(6):1297-307. PubMed ID: 19934875
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Knockdown of the aryl hydrocarbon receptor attenuates excitotoxicity and enhances NMDA-induced BDNF expression in cortical neurons.
    Lin CH; Chen CC; Chou CM; Wang CY; Hung CC; Chen JY; Chang HW; Chen YC; Yeh GC; Lee YH
    J Neurochem; 2009 Nov; 111(3):777-89. PubMed ID: 19712055
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Striatal synaptic changes in experimental parkinsonism: role of NMDA receptor trafficking in PSD.
    Picconi B; Ghiglieri V; Bagetta V; Barone I; Sgobio C; Calabresi P
    Parkinsonism Relat Disord; 2008; 14 Suppl 2():S145-9. PubMed ID: 18583173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Postsynaptic density-membrane associated guanylate kinase proteins (PSD-MAGUKs) and their role in CNS disorders.
    Gardoni F; Marcello E; Di Luca M
    Neuroscience; 2009 Jan; 158(1):324-33. PubMed ID: 18773944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders.
    Lau CG; Zukin RS
    Nat Rev Neurosci; 2007 Jun; 8(6):413-26. PubMed ID: 17514195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prolonged reciprocal signaling via NMDA and GABA receptors at a retinal ribbon synapse.
    Vigh J; von Gersdorff H
    J Neurosci; 2005 Dec; 25(49):11412-23. PubMed ID: 16339035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Beta-amyloid oligomers affect the structure and function of the postsynaptic region: role of the Wnt signaling pathway.
    Dinamarca MC; Colombres M; Cerpa W; Bonansco C; Inestrosa NC
    Neurodegener Dis; 2008; 5(3-4):149-52. PubMed ID: 18322375
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of excitation by GABA(A) receptor internalization.
    Leidenheimer NJ
    Results Probl Cell Differ; 2008; 44():1-28. PubMed ID: 17549438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Variations in excitatory and inhibitory postsynaptic protein content in rat cerebral cortex with respect to aging and cognitive status.
    Majdi M; Ribeiro-da-Silva A; Cuello AC
    Neuroscience; 2009 Mar; 159(2):896-907. PubMed ID: 19105974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long-term potentiation of high-frequency oscillation and synaptic transmission characterize in vitro NMDA receptor-dependent epileptogenesis in the hippocampus.
    Moschovos C; Kostopoulos G; Papatheodoropoulos C
    Neurobiol Dis; 2008 Feb; 29(2):368-80. PubMed ID: 18035548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lysosomal dysfunction produces distinct alterations in synaptic alpha-amino-3-hydroxy-5-methylisoxazolepropionic acid and N-methyl-D-aspartate receptor currents in hippocampus.
    Kanju PM; Parameshwaran K; Vaithianathan T; Sims CM; Huggins K; Bendiske J; Ryzhikov S; Bahr BA; Suppiramaniam V
    J Neuropathol Exp Neurol; 2007 Sep; 66(9):779-88. PubMed ID: 17805008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct interaction of N-ethylmaleimide-sensitive factor with GABA(A) receptor beta subunits.
    Goto H; Terunuma M; Kanematsu T; Misumi Y; Moss SJ; Hirata M
    Mol Cell Neurosci; 2005 Oct; 30(2):197-206. PubMed ID: 16095914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neurosteroid modulation of N-methyl-D-aspartate receptors: molecular mechanism and behavioral effects.
    Korinek M; Kapras V; Vyklicky V; Adamusova E; Borovska J; Vales K; Stuchlik A; Horak M; Chodounska H; Vyklicky L
    Steroids; 2011 Dec; 76(13):1409-18. PubMed ID: 21925193
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Growth of the NMDA receptor industrial complex.
    Sheng M; Lee SH
    Nat Neurosci; 2000 Jul; 3(7):633-5. PubMed ID: 10862688
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.