BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17052711)

  • 21. In vivo formation and stability of engineered disulfide bonds in subtilisin.
    Wells JA; Powers DB
    J Biol Chem; 1986 May; 261(14):6564-70. PubMed ID: 3516996
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stability of protease Q against autolysis and in sodium dodecyl sulfate and urea solutions.
    Han XQ; Damodaran S
    Biochem Biophys Res Commun; 1997 Nov; 240(3):839-43. PubMed ID: 9398655
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The 0.93A crystal structure of sphericase: a calcium-loaded serine protease from Bacillus sphaericus.
    Almog O; González A; Klein D; Greenblatt HM; Braun S; Shoham G
    J Mol Biol; 2003 Oct; 332(5):1071-82. PubMed ID: 14499610
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In-vitro selection of highly stabilized protein variants with optimized surface.
    Martin A; Sieber V; Schmid FX
    J Mol Biol; 2001 Jun; 309(3):717-26. PubMed ID: 11397091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Production and some properties of a thermophilic protease from Bacillus stearothermophilus WF146].
    Tang B; Zhou L; Chen X; Dai X; Peng Z
    Wei Sheng Wu Xue Bao; 2000 Apr; 40(2):188-92. PubMed ID: 12548943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Subtilisin from psychrophilic antarctic bacteria: characterization and site-directed mutagenesis of residues possibly involved in the adaptation to cold.
    Narinx E; Baise E; Gerday C
    Protein Eng; 1997 Nov; 10(11):1271-9. PubMed ID: 9514115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flavins inhibit human cytomegalovirus UL80 protease via disulfide bond formation.
    Baum EZ; Ding WD; Siegel MM; Hulmes J; Bebernitz GA; Sridharan L; Tabei K; Krishnamurthy G; Carofiglio T; Groves JT; Bloom JD; DiGrandi M; Bradley M; Ellestad G; Seddon AP; Gluzman Y
    Biochemistry; 1996 May; 35(18):5847-55. PubMed ID: 8639546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Requirement for a disulfide bridge near the reactive site of protease inhibitor SSI (Streptomyces subtilisin inhibitor) for its inhibitory action.
    Kojima S; Kumagai I; Miura K
    J Mol Biol; 1993 Mar; 230(2):395-9. PubMed ID: 8464055
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering subtilisin E for enhanced stability and activity in polar organic solvents.
    Takagi H; Hirai K; Maeda Y; Matsuzawa H; Nakamori S
    J Biochem; 2000 Apr; 127(4):617-25. PubMed ID: 10739954
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cold adaptation of a mesophilic subtilisin-like protease by laboratory evolution.
    Wintrode PL; Miyazaki K; Arnold FH
    J Biol Chem; 2000 Oct; 275(41):31635-40. PubMed ID: 10906329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural determinants of the half-life and cleavage site preference in the autolytic inactivation of chymotrypsin.
    Bódi A; Kaslik G; Venekei I; Gráf L
    Eur J Biochem; 2001 Dec; 268(23):6238-46. PubMed ID: 11733020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein engineering of disulfide bonds in subtilisin BPN'.
    Mitchinson C; Wells JA
    Biochemistry; 1989 May; 28(11):4807-15. PubMed ID: 2504281
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alteration of inhibitory properties of Pleurotus ostreatus proteinase A inhibitor 1 by mutation of its C-terminal region.
    Kojima S; Hisano Y; Miura K
    Biochem Biophys Res Commun; 2001 Mar; 281(5):1271-6. PubMed ID: 11243873
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA family shuffling of hyperthermostable beta-glycosidases.
    Kaper T; Brouns SJ; Geerling AC; De Vos WM; Van der Oost J
    Biochem J; 2002 Dec; 368(Pt 2):461-70. PubMed ID: 12164784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced thermostability of the single-Cys mutant subtilisin E under oxidizing conditions.
    Takagi H; Hirai K; Wada M; Nakamori S
    J Biochem; 2000 Oct; 128(4):585-9. PubMed ID: 11011140
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calcium-independent subtilisin by design.
    Gallagher T; Bryan P; Gilliland GL
    Proteins; 1993 Jun; 16(2):205-13. PubMed ID: 8332608
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new approach for alteration of protease functions: pro-sequence engineering.
    Takagi H; Takahashi M
    Appl Microbiol Biotechnol; 2003 Nov; 63(1):1-9. PubMed ID: 12879301
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermostable variants of subtilisin selected by temperature-gradient gel electrophoresis.
    Sättler A; Kanka S; Maurer KH; Riesner D
    Electrophoresis; 1996 Apr; 17(4):784-92. PubMed ID: 8738345
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of recombinant Plasmodium falciparum subtilisin-like protease-1 in insect cells. Characterization, comparison with the parasite protease, and homology modeling.
    Withers-Martinez C; Saldanha JW; Ely B; Hackett F; O'Connor T; Blackman MJ
    J Biol Chem; 2002 Aug; 277(33):29698-709. PubMed ID: 12052828
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering a disulfide bond in recombinant manganese peroxidase results in increased thermostability.
    Reading NS; Aust SD
    Biotechnol Prog; 2000; 16(3):326-33. PubMed ID: 10835231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.