These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 17052742)

  • 1. Production, composition and Pb2+ adsorption characteristics of capsular polysaccharides extracted from a cyanobacterium Gloeocapsa gelatinosa.
    Raungsomboon S; Chidthaisong A; Bunnag B; Inthorn D; Harvey NW
    Water Res; 2006 Dec; 40(20):3759-66. PubMed ID: 17052742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of lead (Pb(2+)) by the cyanobacterium Gloeocapsa sp.
    Raungsomboon S; Chidthaisong A; Bunnag B; Inthorn D; Harvey NW
    Bioresour Technol; 2008 Sep; 99(13):5650-8. PubMed ID: 18068356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of barley straws as biosorbents for Cu2+ and Pb2+ ions.
    Pehlivan E; Altun T; Parlayici S
    J Hazard Mater; 2009 May; 164(2-3):982-6. PubMed ID: 18976859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequestration of chromium by exopolysaccharides of Nostoc and Gloeocapsa from dilute aqueous solutions.
    Sharma M; Kaushik A; Somvir ; Bala K; Kamra A
    J Hazard Mater; 2008 Sep; 157(2-3):315-8. PubMed ID: 18280649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of lead ions in aqueous solution by hydroxyapatite/polyurethane composite foams.
    Jang SH; Min BG; Jeong YG; Lyoo WS; Lee SC
    J Hazard Mater; 2008 Apr; 152(3):1285-92. PubMed ID: 17850963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equilibrium isotherm studies for the uptake of cadmium and lead ions onto sugar beet pulp.
    Pehlivan E; Yanik BH; Ahmetli G; Pehlivan M
    Bioresour Technol; 2008 Jun; 99(9):3520-7. PubMed ID: 17855082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel biodegradable nanocomposite based on XG-g-PAM/SiO2: application of an efficient adsorbent for Pb2+ ions from aqueous solution.
    Ghorai S; Sinhamahpatra A; Sarkar A; Panda AB; Pal S
    Bioresour Technol; 2012 Sep; 119():181-90. PubMed ID: 22728199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lead removal by a natural polysaccharide in membrane reactors.
    Reddad Z; Gérente C; Andrès Y; Le Cloirec P
    Water Sci Technol; 2004; 49(1):163-70. PubMed ID: 14979552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lead toxicity in cyanobacterial porphyrin metabolism.
    Zaccaro MC; Salazar C; Zulpa de Caire G; Storni de Cano M; Stella AM
    Environ Toxicol; 2001; 16(1):61-7. PubMed ID: 11345546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile preparation of magnetic carbonaceous nanoparticles for Pb2+ ions removal.
    Nata IF; Salim GW; Lee CK
    J Hazard Mater; 2010 Nov; 183(1-3):853-8. PubMed ID: 20800347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of lead biosorption on cellulose/chitin beads.
    Zhou D; Zhang L; Guo S
    Water Res; 2005 Oct; 39(16):3755-62. PubMed ID: 16112169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Adsorption of Pb2+ onto chitosan-grafted-poly (acrylic acid )/sepiolite composite].
    Zheng YA; Xie YT; Wang AQ
    Huan Jing Ke Xue; 2009 Sep; 30(9):2575-9. PubMed ID: 19927807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of lead and cadmium ions from aqueous solution by adsorption onto micro-particles of dry plants.
    Benhima H; Chiban M; Sinan F; Seta P; Persin M
    Colloids Surf B Biointerfaces; 2008 Jan; 61(1):10-6. PubMed ID: 17869071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of surface chemistry and solution pH on the removal of Pb2+ and Cd2+ ions via effective adsorbents from low-cost biomass.
    El-Hendawy AN
    J Hazard Mater; 2009 Aug; 167(1-3):260-7. PubMed ID: 19195774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capacity of adsorption of Pb2+ and Ni2+ from aqueous solutions by chitosan produced from silkworm chrysalides in different degrees of deacetylation.
    Paulino AT; Guilherme MR; Reis AV; Tambourgi EB; Nozaki J; Muniz EC
    J Hazard Mater; 2007 Aug; 147(1-2):139-47. PubMed ID: 17258857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of novel polysulfone capsules containing zirconium phosphate and their properties for Pb2+ removal from aqueous solution.
    Ma X; Li Y; Li X; Yang L; Wang X
    J Hazard Mater; 2011 Apr; 188(1-3):296-303. PubMed ID: 21333440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride.
    Boudrahem F; Aissani-Benissad F; Aït-Amar H
    J Environ Manage; 2009 Jul; 90(10):3031-9. PubMed ID: 19447542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of magnesia for boron removal from irrigation water.
    Dionisiou N; Matsi T; Misopolinos ND
    J Environ Qual; 2006; 35(6):2222-8. PubMed ID: 17071892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of lead from aqueous solution by hybrid precursor prepared by rice hull.
    Gupta N; Amritphale SS; Chandra N
    J Hazard Mater; 2009 Apr; 163(2-3):1194-8. PubMed ID: 18774221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of orange peel xanthate for the adsorption of Pb2+ from aqueous solutions.
    Liang S; Guo X; Feng N; Tian Q
    J Hazard Mater; 2009 Oct; 170(1):425-9. PubMed ID: 19473765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.