These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 1705290)
1. Channels formed in phospholipid bilayer membranes by diphtheria, tetanus, botulinum and anthrax toxin. Finkelstein A J Physiol (Paris); 1990; 84(2):188-90. PubMed ID: 1705290 [TBL] [Abstract][Full Text] [Related]
2. Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. Hoch DH; Romero-Mira M; Ehrlich BE; Finkelstein A; DasGupta BR; Simpson LL Proc Natl Acad Sci U S A; 1985 Mar; 82(6):1692-6. PubMed ID: 3856850 [TBL] [Abstract][Full Text] [Related]
3. Orientation in lipid bilayers of a synthetic peptide representing the C-terminus of the A1 domain of shiga toxin. A polarized ATR-FTIR study. Menikh A; Saleh MT; Gariépy J; Boggs JM Biochemistry; 1997 Dec; 36(50):15865-72. PubMed ID: 9398319 [TBL] [Abstract][Full Text] [Related]
4. [Activity of toxins produced by Pseudomonas syringae pv. syringae in model and cell membranes]. Gur'nev FA; Kaulin IuA; Tikhomirova AV; Wangspa R; Takemoto D; Malev VV; Shchagina LV Tsitologiia; 2002; 44(3):296-304. PubMed ID: 12094768 [TBL] [Abstract][Full Text] [Related]
5. Anthrax toxin: channel-forming activity of protective antigen in planar phospholipid bilayers. Blaustein RO; Koehler TM; Collier RJ; Finkelstein A Proc Natl Acad Sci U S A; 1989 Apr; 86(7):2209-13. PubMed ID: 2467303 [TBL] [Abstract][Full Text] [Related]
6. A novel Bacillus thuringiensis (PS149B1) containing a Cry34Ab1/Cry35Ab1 binary toxin specific for the western corn rootworm Diabrotica virgifera virgifera LeConte forms ion channels in lipid membranes. Masson L; Schwab G; Mazza A; Brousseau R; Potvin L; Schwartz JL Biochemistry; 2004 Sep; 43(38):12349-57. PubMed ID: 15379574 [TBL] [Abstract][Full Text] [Related]
7. Protein translocation through anthrax toxin channels formed in planar lipid bilayers. Zhang S; Udho E; Wu Z; Collier RJ; Finkelstein A Biophys J; 2004 Dec; 87(6):3842-9. PubMed ID: 15377524 [TBL] [Abstract][Full Text] [Related]
8. Protein translocation by bacterial toxin channels: a comparison of diphtheria toxin and colicin Ia. Wu Z; Jakes KS; Samelson-Jones BS; Lai B; Zhao G; London E; Finkelstein A Biophys J; 2006 Nov; 91(9):3249-56. PubMed ID: 16905612 [TBL] [Abstract][Full Text] [Related]
9. Tryptophan spectroscopy studies and black lipid bilayer analysis indicate that the oligomeric structure of Cry1Ab toxin from Bacillus thuringiensis is the membrane-insertion intermediate. Rausell C; Muñoz-Garay C; Miranda-CassoLuengo R; Gómez I; Rudiño-Piñera E; Soberón M; Bravo A Biochemistry; 2004 Jan; 43(1):166-74. PubMed ID: 14705942 [TBL] [Abstract][Full Text] [Related]
10. Chaperoning of insertion of membrane proteins into lipid bilayers by hemifluorinated surfactants: application to diphtheria toxin. Palchevskyy SS; Posokhov YO; Olivier B; Popot JL; Pucci B; Ladokhin AS Biochemistry; 2006 Feb; 45(8):2629-35. PubMed ID: 16489756 [TBL] [Abstract][Full Text] [Related]
11. Modular drug transporters with diphtheria toxin translocation domain form edged holes in lipid membranes. Khramtsov YV; Rokitskaya TI; Rosenkranz AA; Trusov GA; Gnuchev NV; Antonenko YN; Sobolev AS J Control Release; 2008 Jun; 128(3):241-7. PubMed ID: 18442865 [TBL] [Abstract][Full Text] [Related]
12. Membrane interactions of tetanus and botulinum neurotoxins: a photolabelling study with photoactivatable phospholipids. Schiavo G; Boquet P; Dasgupta BR; Montecucco C J Physiol (Paris); 1990; 84(2):180-7. PubMed ID: 2290132 [TBL] [Abstract][Full Text] [Related]
13. Diphtheria toxin fragment forms large pores in phospholipid bilayer membranes. Kagan BL; Finkelstein A; Colombini M Proc Natl Acad Sci U S A; 1981 Aug; 78(8):4950-4. PubMed ID: 6272284 [TBL] [Abstract][Full Text] [Related]
14. Double anchorage to the membrane and intact inter-chain disulfide bond are required for the low pH induced entry of tetanus and botulinum neurotoxins into neurons. Pirazzini M; Rossetto O; Bolognese P; Shone CC; Montecucco C Cell Microbiol; 2011 Nov; 13(11):1731-43. PubMed ID: 21790947 [TBL] [Abstract][Full Text] [Related]
15. Analyzing topography of membrane-inserted diphtheria toxin T domain using BODIPY-streptavidin: at low pH, helices 8 and 9 form a transmembrane hairpin but helices 5-7 form stable nonclassical inserted segments on the cis side of the bilayer. Rosconi MP; Zhao G; London E Biochemistry; 2004 Jul; 43(28):9127-39. PubMed ID: 15248770 [TBL] [Abstract][Full Text] [Related]
16. Use of Trp mutations to evaluate the conformational behavior and membrane insertion of A and B chains in whole diphtheria toxin. Wang Y; Kachel K; Pablo L; London E Biochemistry; 1997 Dec; 36(51):16300-8. PubMed ID: 9405065 [TBL] [Abstract][Full Text] [Related]
18. [Properties of conductivity channels induced in phospholipid bilayer membranes by alpha-staphylotoxin]. Krasil'nikov OV; Ternovskiĭ VI; Tashmukhamedov BA Biofizika; 1981; 26(2):271-6. PubMed ID: 6266506 [TBL] [Abstract][Full Text] [Related]
19. Lipid interaction of Pseudomonas aeruginosa exotoxin A. Acid-triggered permeabilization and aggregation of lipid vesicles. Menestrina G; Pederzolli C; Forti S; Gambale F Biophys J; 1991 Dec; 60(6):1388-400. PubMed ID: 1723312 [TBL] [Abstract][Full Text] [Related]
20. The diphtheria toxin channel-forming T-domain translocates its own NH2-terminal region and the catalytic domain across planar phospholipid bilayers. Finkelstein A; Oh KJ; Senzel L; Gordon M; Blaustein RO; Collier RJ Int J Med Microbiol; 2000 Oct; 290(4-5):435-40. PubMed ID: 11111923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]