BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1277 related articles for article (PubMed ID: 17053323)

  • 61. Osteogenic differentiation of bone-marrow-derived stem cells cultured with mixed gelatin and chitooligosaccharide scaffolds.
    Ratanavaraporn J; Damrongsakkul S; Kanokpanont S; Yamamoto M; Tabata Y
    J Biomater Sci Polym Ed; 2011; 22(8):1083-98. PubMed ID: 20615314
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Repair of cranial defects with bone marrow derived mesenchymal stem cells and beta-TCP scaffold in rabbits].
    Bo B; Wang CY; Guo XM
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2003 Jul; 17(4):335-8. PubMed ID: 12920731
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Bone morphogenic protein-2 (BMP-2) loaded nanoparticles mixed with human mesenchymal stem cell in fibrin hydrogel for bone tissue engineering.
    Park KH; Kim H; Moon S; Na K
    J Biosci Bioeng; 2009 Dec; 108(6):530-7. PubMed ID: 19914589
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells.
    Zhang ZY; Teoh SH; Chong MS; Schantz JT; Fisk NM; Choolani MA; Chan J
    Stem Cells; 2009 Jan; 27(1):126-37. PubMed ID: 18832592
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The size of surface microstructures as an osteogenic factor in calcium phosphate ceramics.
    Zhang J; Luo X; Barbieri D; Barradas AM; de Bruijn JD; van Blitterswijk CA; Yuan H
    Acta Biomater; 2014 Jul; 10(7):3254-63. PubMed ID: 24681376
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Preparation of injectable 3D-formed beta-tricalcium phosphate bead/alginate composite for bone tissue engineering.
    Matsuno T; Hashimoto Y; Adachi S; Omata K; Yoshitaka Y; Ozeki Y; Umezu Y; Tabata Y; Nakamura M; Satoh T
    Dent Mater J; 2008 Nov; 27(6):827-34. PubMed ID: 19241692
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Osteoblast interactions with calcium phosphate ceramics modified by coating with type I collagen.
    Brodie JC; Goldie E; Connel G; Merry J; Grant MH
    J Biomed Mater Res A; 2005 Jun; 73(4):409-21. PubMed ID: 15892144
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Evaluation of nano-biphasic calcium phosphate ceramics for bone tissue engineering applications: in vitro and preliminary in vivo studies.
    Reddy S; Wasnik S; Guha A; Kumar JM; Sinha A; Singh S
    J Biomater Appl; 2013 Jan; 27(5):565-75. PubMed ID: 22286210
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Platelet-rich plasma-derived growth factors promote osteogenic differentiation of rat muscle satellite cells: in vitro and in vivo studies.
    Huang S; Wang Z
    Cell Biol Int; 2012; 36(12):1195-205. PubMed ID: 22988823
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Combining mesenchymal stem cell sheets with platelet-rich plasma gel/calcium phosphate particles: a novel strategy to promote bone regeneration.
    Qi Y; Niu L; Zhao T; Shi Z; Di T; Feng G; Li J; Huang Z
    Stem Cell Res Ther; 2015 Dec; 6():256. PubMed ID: 26689714
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Application of perfusion culture system improves in vitro and in vivo osteogenesis of bone marrow-derived osteoblastic cells in porous ceramic materials.
    Wang Y; Uemura T; Dong J; Kojima H; Tanaka J; Tateishi T
    Tissue Eng; 2003 Dec; 9(6):1205-14. PubMed ID: 14670108
    [TBL] [Abstract][Full Text] [Related]  

  • 72. 3D microenvironment as essential element for osteoinduction by biomaterials.
    Habibovic P; Yuan H; van der Valk CM; Meijer G; van Blitterswijk CA; de Groot K
    Biomaterials; 2005 Jun; 26(17):3565-75. PubMed ID: 15621247
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Calcium phosphate surfaces promote osteogenic differentiation of mesenchymal stem cells.
    Müller P; Bulnheim U; Diener A; Lüthen F; Teller M; Klinkenberg ED; Neumann HG; Nebe B; Liebold A; Steinhoff G; Rychly J
    J Cell Mol Med; 2008; 12(1):281-91. PubMed ID: 18366455
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Enhanced osteogenic activity of a poly(butylene succinate)/calcium phosphate composite by simple alkaline hydrolysis.
    Arphavasin S; Singhatanadgit W; Ngamviriyavong P; Janvikul W; Meesap P; Patntirapong S
    Biomed Mater; 2013 Oct; 8(5):055008. PubMed ID: 24057872
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biomimetic versus sintered macroporous calcium phosphate scaffolds enhanced bone regeneration and human mesenchymal stromal cell engraftment in calvarial defects.
    Brennan MÁ; Monahan DS; Brulin B; Gallinetti S; Humbert P; Tringides C; Canal C; Ginebra MP; Layrolle P
    Acta Biomater; 2021 Nov; 135():689-704. PubMed ID: 34520883
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A new platelet cryoprecipitate glue promoting bone formation after ectopic mesenchymal stromal cell-loaded biomaterial implantation in nude mice.
    Trouillas M; Prat M; Doucet C; Ernou I; Laplace-Builhé C; Blancard PS; Holy X; Lataillade JJ
    Stem Cell Res Ther; 2013 Jan; 4(1):1. PubMed ID: 23290259
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cells responding to surface structure of calcium phosphate ceramics for bone regeneration.
    Zhang J; Sun L; Luo X; Barbieri D; de Bruijn JD; van Blitterswijk CA; Moroni L; Yuan H
    J Tissue Eng Regen Med; 2017 Nov; 11(11):3273-3283. PubMed ID: 28176491
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evaluating apatite formation and osteogenic activity of electrospun composites for bone tissue engineering.
    Patlolla A; Arinzeh TL
    Biotechnol Bioeng; 2014 May; 111(5):1000-17. PubMed ID: 24264603
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Incorporating platelet-rich plasma into coaxial electrospun nanofibers for bone tissue engineering.
    Cheng G; Ma X; Li J; Cheng Y; Cao Y; Wang Z; Shi X; Du Y; Deng H; Li Z
    Int J Pharm; 2018 Aug; 547(1-2):656-666. PubMed ID: 29886100
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Calcium phosphate surface treatment of bioactive glass causes a delay in early osteogenic differentiation of adipose stem cells.
    Haimi S; Moimas L; Pirhonen E; Lindroos B; Huhtala H; Räty S; Kuokkanen H; Sándor GK; Miettinen S; Suuronen R
    J Biomed Mater Res A; 2009 Nov; 91(2):540-7. PubMed ID: 18985777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 64.