These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 170537)

  • 1. Light-induced formation of dense-core vesicles in rod photoreceptors in retina of Xenopus laevis.
    Monaghan P; Osborne MP
    Nature; 1975 Oct; 257(5527):586-7. PubMed ID: 170537
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of light and dark upon photoreceptor synapses in the retina of Xenopus laevis.
    Osborne MP; Monaghan P
    Cell Tissue Res; 1976 Oct; 173(2):211-20. PubMed ID: 991238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential sensitivity of rods and cones in Xenopus retina to hemicholinium-3.
    Osborne MP; Monaghan P
    Cell Tissue Res; 1976 Nov; 175(1):59-72. PubMed ID: 1000598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Changes in the distribution of synaptic vesicles in cone endings following electrical stimulation of the retina].
    Trifonov IuA; Galushchenko IV
    Neirofiziologiia; 1976; 8(6):620-3. PubMed ID: 1012402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Further studies on the cationic staining of retinal photoreceptors.
    Sulzer D; Ungar F; Holtzman E
    J Histochem Cytochem; 1990 May; 38(5):743-5. PubMed ID: 1692057
    [No Abstract]   [Full Text] [Related]  

  • 6. Strain differences in the ratio of synaptic body types in photoreceptors of the rat retina.
    Hermes B; Reuss S; Vollrath L
    Vision Res; 1993 Dec; 33(17):2427-30. PubMed ID: 8249321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carnosine-like immunoreactivity is associated with synaptic vesicles in photoreceptors of the frog retina.
    Pognetto MS; Cantino D; Fasolo A
    Brain Res; 1992 Apr; 578(1-2):261-8. PubMed ID: 1511280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron cytochemical demonstration of -SH groups in the synaptic vesicles of photoreceptor cells with the mixture of zinc iodide-osmium tetroxide.
    Pellegrino de Iraldi A
    Experientia; 1975 Jul; 31(7):842-4. PubMed ID: 49279
    [No Abstract]   [Full Text] [Related]  

  • 9. Membrane recycling in the cone cell endings of the turtle retina.
    Schaeffer SF; Raviola E
    J Cell Biol; 1978 Dec; 79(3):802-25. PubMed ID: 730768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of photoreceptor and conventional nerve terminals by subcellular fractionation of rabbit retina.
    Neal MJ; Atterwill CK
    Nature; 1974 Sep; 251(5473):331-3. PubMed ID: 4154403
    [No Abstract]   [Full Text] [Related]  

  • 11. Xenopus laevis tadpoles can regenerate neural retina lost after physical excision but cannot regenerate photoreceptors lost through targeted ablation.
    Lee DC; Hamm LM; Moritz OL
    Invest Ophthalmol Vis Sci; 2013 Mar; 54(3):1859-67. PubMed ID: 23425694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vesicular transport of newly synthesized opsin from the Golgi apparatus toward the rod outer segment. Ultrastructural immunocytochemical and autoradiographic evidence in Xenopus retinas.
    Papermaster DS; Schneider BG; Besharse JC
    Invest Ophthalmol Vis Sci; 1985 Oct; 26(10):1386-404. PubMed ID: 2931395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine structure of retinal synaptic organelles in lamprey and hagfish photoreceptors.
    Holmberg K; Ohman P
    Vision Res; 1976; 16(3):237-9. PubMed ID: 1266067
    [No Abstract]   [Full Text] [Related]  

  • 14. Light dependence of osmium reactivity in mouse photoreceptor cells.
    Pourcho RG; Bernstein MH
    Am J Anat; 1975 Jul; 143(3):371-83. PubMed ID: 50727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peroxidase uptake by photoreceptor terminals of the skate retina.
    Ripps H; Shakib M; MacDonald ED
    J Cell Biol; 1976 Jul; 70(1):86-96. PubMed ID: 932103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dense core vesicles during photoreceptor development.
    Armengol JA; Prada F; Quesada A; Génis-Gálvez JM
    Experientia; 1984 Oct; 40(10):1149-51. PubMed ID: 6489507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diurnal variations in the photoreceptor synaptic terminals of the newt retina.
    Ball AK; Dickson DH
    Am J Anat; 1983 Nov; 168(3):305-20. PubMed ID: 6685971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstration of dopamine in electron-dense synaptic vesicles in the pars intermedia of Xenopus laevis, by freeze substitution and postembedding immunogold electron microscopy.
    van Strien FJ; de Rijk EP; Heymen PS; Hafmans TG; Roubos EW
    Histochemistry; 1991; 96(6):505-10. PubMed ID: 1769861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoreceptor to horizontal cell synaptic transfer in the Xenopus retina: modulation by dopamine ligands and a circuit model for interactions of rod and cone inputs.
    Witkovsky P; Stone S; Tranchina D
    J Neurophysiol; 1989 Oct; 62(4):864-81. PubMed ID: 2530319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synapse formation and modification between distal retinal neurons in larval and juvenile Xenopus.
    Witkovsky P; Powell CC
    Proc R Soc Lond B Biol Sci; 1981 Mar; 211(1184):373-89. PubMed ID: 6111804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.