These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 17054349)

  • 1. Planar tetracoordinate carbon atoms centered in bare four-membered rings of late transition metals.
    Roy D; Corminboeuf C; Wannere CS; King RB; Schleyer PV
    Inorg Chem; 2006 Oct; 45(22):8902-6. PubMed ID: 17054349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boron fullerenes B(32+8k) with four-membered rings and B32 solid phases: geometrical structures and electronic properties.
    Sheng XL; Yan QB; Zheng QR; Su G
    Phys Chem Chem Phys; 2009 Nov; 11(42):9696-702. PubMed ID: 19851546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. (C5M2-n)(n-) (M = Li, Na, K, and n = 0, 1, 2). A new family of molecules containing planar tetracoordinate carbons.
    Merino G; Méndez-Rojas MA; Vela A
    J Am Chem Soc; 2003 May; 125(20):6026-7. PubMed ID: 12785811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure, stability, electronic and magnetic properties of Ni4 clusters containing impurity atoms.
    St Petkov P; Vayssilov GN; Krüger S; Rösch N
    Phys Chem Chem Phys; 2006 Mar; 8(11):1282-91. PubMed ID: 16633608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyhedral structures with three-, four-, and five fold symmetry in metal-centered ten-vertex germanium clusters.
    King RB; Silaghi-Dumitrescu I; Uţă MM
    Chemistry; 2008; 14(15):4542-50. PubMed ID: 18386281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Planar and pyramidal tetracoordinate carbon in organoboron compounds.
    Minyaev RM; Gribanova TN; Minkin VI; Starikov AG; Hoffmann R
    J Org Chem; 2005 Aug; 70(17):6693-704. PubMed ID: 16095289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical analysis of the smallest carbon cluster containing a planar tetracoordinate carbon.
    Merino G; Méndez-Rojas MA; Beltrán HI; Corminboeuf C; Heine T; Vela A
    J Am Chem Soc; 2004 Dec; 126(49):16160-9. PubMed ID: 15584752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simplest neutral singlet C2E4 (E = Al, Ga, In, and Tl) global minima with double planar tetracoordinate carbons: equivalence of C2 moieties in C2E4 to carbon centers in CAl4(2-) and CAl5(+).
    Wu YB; Lu HG; Li SD; Wang ZX
    J Phys Chem A; 2009 Apr; 113(14):3395-402. PubMed ID: 19296634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability rules of main-group element compounds with planar tetracoordinate carbons.
    Zhang C; Jia W; Cao Z
    J Phys Chem A; 2010 Aug; 114(30):7960-6. PubMed ID: 20617799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Planar tetracoordinate carbons in cyclic semisaturated hydrocarbons.
    Perez-Peralta N; Sanchez M; Martin-Polo J; Islas R; Vela A; Merino G
    J Org Chem; 2008 Sep; 73(18):7037-44. PubMed ID: 18642953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perfect planar tetracoordinate carbon in neutral unsaturated hydrocarbon cages: a new strategy utilizing three-dimensional electron delocalization.
    Wang Y
    J Comput Chem; 2009 Oct; 30(13):2122-6. PubMed ID: 19242964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures and energies of isolobal (BCO)n and (CH)n cages.
    Wu HS; Qin XF; Xu XH; Jiao H; Schleyer PV
    J Am Chem Soc; 2005 Feb; 127(7):2334-8. PubMed ID: 15713113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zigzag boron-carbon nanotubes with quasi-planar tetracoordinate carbons.
    Zhang C; Sun W; Cao Z
    J Am Chem Soc; 2008 Apr; 130(17):5638-9. PubMed ID: 18393494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition-metal-centered nine-membered boron rings: MⓒB9 and MⓒB9(-) (M = Rh, Ir).
    Li WL; Romanescu C; Galeev TR; Piazza ZA; Boldyrev AI; Wang LS
    J Am Chem Soc; 2012 Jan; 134(1):165-8. PubMed ID: 22148745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared spectroscopy of Cu+(H2O)(n) and Ag+(H2O)(n): coordination and solvation of noble-metal ions.
    Iino T; Ohashi K; Inoue K; Judai K; Nishi N; Sekiya H
    J Chem Phys; 2007 May; 126(19):194302. PubMed ID: 17523799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic structure of copper phthalocyanine: an experimental and theoretical study of occupied and unoccupied levels.
    Evangelista F; Carravetta V; Stefani G; Jansik B; Alagia M; Stranges S; Ruocco A
    J Chem Phys; 2007 Mar; 126(12):124709. PubMed ID: 17411154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the 5f orbitals in bonding, aromaticity, and reactivity of planar isocyclic and heterocyclic uranium clusters.
    Tsipis AC; Kefalidis CE; Tsipis CA
    J Am Chem Soc; 2008 Jul; 130(28):9144-55. PubMed ID: 18570422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermetallic compounds of the heaviest elements and their homologs: the electronic structure and bonding of MM', where M=Ge, Sn, Pb, and element 114, and M'=Ni, Pd, Pt, Cu, Ag, Au, Sn, Pb, and element 114.
    Pershina V; Anton J; Fricke B
    J Chem Phys; 2007 Oct; 127(13):134310. PubMed ID: 17919027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Planar tetracoordinate carbon strips in edge decorated graphene nanoribbon.
    Wu M; Pei Y; Zeng XC
    J Am Chem Soc; 2010 Apr; 132(16):5554-5. PubMed ID: 20355698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic structure of the [MNH2]+ (M = Sc-Cu) complexes.
    Hendrickx MF; Clima S
    J Phys Chem A; 2006 Nov; 110(46):12629-35. PubMed ID: 17107114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.