BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 17054724)

  • 1. Nuclear and cytoplasmic c-Ski differently modulate cellular functions.
    Nagata M; Goto K; Ehata S; Kobayashi N; Saitoh M; Miyoshi H; Imamura T; Miyazawa K; Miyazono K
    Genes Cells; 2006 Nov; 11(11):1267-80. PubMed ID: 17054724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. c-Ski activates MyoD in the nucleus of myoblastic cells through suppression of histone deacetylases.
    Kobayashi N; Goto K; Horiguchi K; Nagata M; Kawata M; Miyazawa K; Saitoh M; Miyazono K
    Genes Cells; 2007 Mar; 12(3):375-85. PubMed ID: 17352741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. c-Ski inhibits the TGF-beta signaling pathway through stabilization of inactive Smad complexes on Smad-binding elements.
    Suzuki H; Yagi K; Kondo M; Kato M; Miyazono K; Miyazawa K
    Oncogene; 2004 Jun; 23(29):5068-76. PubMed ID: 15107821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoplasmic localization of the oncogenic protein Ski in human cutaneous melanomas in vivo: functional implications for transforming growth factor beta signaling.
    Reed JA; Bales E; Xu W; Okan NA; Bandyopadhyay D; Medrano EE
    Cancer Res; 2001 Nov; 61(22):8074-8. PubMed ID: 11719430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The oncoprotein c-ski functions as a direct antagonist of the transforming growth factor-{beta} type I receptor.
    Ferrand N; Atfi A; Prunier C
    Cancer Res; 2010 Nov; 70(21):8457-66. PubMed ID: 20959473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fussel-15, a novel Ski/Sno homolog protein, antagonizes BMP signaling.
    Arndt S; Poser I; Moser M; Bosserhoff AK
    Mol Cell Neurosci; 2007 Apr; 34(4):603-11. PubMed ID: 17292623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Smad7 expression on metastasis of mouse mammary carcinoma JygMC(A) cells.
    Azuma H; Ehata S; Miyazaki H; Watabe T; Maruyama O; Imamura T; Sakamoto T; Kiyama S; Kiyama Y; Ubai T; Inamoto T; Takahara S; Itoh Y; Otsuki Y; Katsuoka Y; Miyazono K; Horie S
    J Natl Cancer Inst; 2005 Dec; 97(23):1734-46. PubMed ID: 16333029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytoplasmic SnoN in normal tissues and nonmalignant cells antagonizes TGF-beta signaling by sequestration of the Smad proteins.
    Krakowski AR; Laboureau J; Mauviel A; Bissell MJ; Luo K
    Proc Natl Acad Sci U S A; 2005 Aug; 102(35):12437-42. PubMed ID: 16109768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of melanoma inhibitory activity on transforming growth factor-beta signaling in malignant melanoma.
    Rothhammer T; Bosserhoff AK
    Melanoma Res; 2006 Aug; 16(4):309-16. PubMed ID: 16845326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ski and SnoN: negative regulators of TGF-beta signaling.
    Luo K
    Curr Opin Genet Dev; 2004 Feb; 14(1):65-70. PubMed ID: 15108807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a phosphorylation site in c-Ski as serine 515.
    Nagata M; Nagata S; Yuki K; Isogaya K; Saitoh M; Miyazono K; Miyazawa K
    J Biochem; 2010 Oct; 148(4):423-7. PubMed ID: 20624875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smad7 antagonizes transforming growth factor beta signaling in the nucleus by interfering with functional Smad-DNA complex formation.
    Zhang S; Fei T; Zhang L; Zhang R; Chen F; Ning Y; Han Y; Feng XH; Meng A; Chen YG
    Mol Cell Biol; 2007 Jun; 27(12):4488-99. PubMed ID: 17438144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A conformational change in PBX1A is necessary for its nuclear localization.
    Saleh M; Huang H; Green NC; Featherstone MS
    Exp Cell Res; 2000 Oct; 260(1):105-15. PubMed ID: 11010815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human papillomavirus type 18 E6 protein binds the cellular PDZ protein TIP-2/GIPC, which is involved in transforming growth factor beta signaling and triggers its degradation by the proteasome.
    Favre-Bonvin A; Reynaud C; Kretz-Remy C; Jalinot P
    J Virol; 2005 Apr; 79(7):4229-37. PubMed ID: 15767424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear transport of Ras-associated tumor suppressor proteins: different transport receptor binding specificities for arginine-rich nuclear targeting signals.
    Kumari G; Singhal PK; Rao MR; Mahalingam S
    J Mol Biol; 2007 Apr; 367(5):1294-311. PubMed ID: 17320110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HCF-dependent nuclear import of VP16.
    La Boissière S; Hughes T; O'Hare P
    EMBO J; 1999 Jan; 18(2):480-9. PubMed ID: 9889203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional domains of the TGF-beta-inducible transcription factor Tieg3 and detection of two putative nuclear localization signals within the zinc finger DNA-binding domain.
    Spittau B; Wang Z; Boinska D; Krieglstein K
    J Cell Biochem; 2007 Jun; 101(3):712-22. PubMed ID: 17252542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Downregulation of Ski and SnoN co-repressors by anisomycin.
    Vázquez-Macías A; Ruíz-Mendoza AB; Fonseca-Sánchez MA; Briones-Orta MA; Macías-Silva M
    FEBS Lett; 2005 Jul; 579(17):3701-6. PubMed ID: 15967445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different localization of Hsp105 family proteins in mammalian cells.
    Saito Y; Yamagishi N; Hatayama T
    Exp Cell Res; 2007 Oct; 313(17):3707-17. PubMed ID: 17643418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the bipartite nuclear localization signal of protein LANA2 from Kaposi's sarcoma-associated herpesvirus.
    Muñoz-Fontela C; Rodríguez E; Nombela C; Arroyo J; Rivas C
    Biochem J; 2003 Sep; 374(Pt 2):545-50. PubMed ID: 12767255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.