BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 17055029)

  • 1. A shift in pathway of iron-mediated perchloroethylene reduction in the presence of sorbed surfactant--a column study.
    Li Z; Willms C; Alley J; Zhang P; Bowman RS
    Water Res; 2006 Dec; 40(20):3811-9. PubMed ID: 17055029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption and reduction of tetrachloroethylene with zero valent iron and amphiphilic molecules.
    Cho HH; Park JW
    Chemosphere; 2006 Aug; 64(6):1047-52. PubMed ID: 16483631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromate transport through columns packed with surfactant-modified zeolite/zero valent iron pellets.
    Li Z; Kirk Jones H; Zhang P; Bowman RS
    Chemosphere; 2007 Aug; 68(10):1861-6. PubMed ID: 17448519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron and organo-bentonite for the reduction and sorption of trichloroethylene.
    Cho HH; Lee T; Hwang SJ; Park JW
    Chemosphere; 2005 Jan; 58(1):103-8. PubMed ID: 15522338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced perchloroethylene reduction in column systems using surfactant-modified zeolite/zero-valent iron pellets.
    Zhang P; Tao X; Li Z; Bowman RS
    Environ Sci Technol; 2002 Aug; 36(16):3597-603. PubMed ID: 12214654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic effect of cationic surfactants on perchloroethylene degradation by zero-valent iron.
    Alessi DS; Li Z
    Environ Sci Technol; 2001 Sep; 35(18):3713-7. PubMed ID: 11783650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of PCE, TCE and 1,1,1-TCA by nanosized FePd bimetallic particles under various experimental conditions.
    Cho Y; Choi SI
    Chemosphere; 2010 Nov; 81(7):940-5. PubMed ID: 20723967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competition for sorption and degradation of chlorinated ethenes in batch zero-valent iron systems.
    Dries J; Bastiaens L; Springael D; Agathos SN; Diels L
    Environ Sci Technol; 2004 May; 38(10):2879-84. PubMed ID: 15212263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones.
    He F; Zhao D; Paul C
    Water Res; 2010 Apr; 44(7):2360-70. PubMed ID: 20106501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling of geochemical and isotopic changes in a column experiment for degradation of TCE by zero-valent iron.
    Prommer H; Aziz LH; Bolaño N; Taubald H; Schüth C
    J Contam Hydrol; 2008 Apr; 97(1-2):13-26. PubMed ID: 18267347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of surfactant solubilization with permanganate oxidation for DNAPL remediation.
    Li Z; Hanlie H
    Water Res; 2008 Feb; 42(3):605-14. PubMed ID: 17826816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.
    Bennett P; He F; Zhao D; Aiken B; Feldman L
    J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of tetrachloroethylene-contaminated groundwater by surfactant-enhanced persulfate/BOF slag oxidation--a laboratory feasibility study.
    Tsai TT; Kao CM; Hong A
    J Hazard Mater; 2009 Nov; 171(1-3):571-6. PubMed ID: 19586715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of mixed chlorinated ethenes and heavy metals in zero valent iron systems.
    Dries J; Bastiaens L; Springael D; Agathos SN; Diels L
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(4):179-83. PubMed ID: 15954286
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system.
    Jung Lin C; Lo SL
    Water Res; 2005 Mar; 39(6):1037-46. PubMed ID: 15766958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competing TCE and cis-DCE degradation kinetics by zero-valent iron-experimental results and numerical simulation.
    Schäfer D; Köber R; Dahmke A
    J Contam Hydrol; 2003 Sep; 65(3-4):183-202. PubMed ID: 12935949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reductive dechlorination of PCE and TCE by vitamin B12 and ZVMs.
    Kim YH; Carraway ER
    Environ Technol; 2002 Oct; 23(10):1135-45. PubMed ID: 12465840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effectiveness of nanoscale zero-valent iron for treatment of a PCE-DNAPL source zone.
    Taghavy A; Costanza J; Pennell KD; Abriola LM
    J Contam Hydrol; 2010 Nov; 118(3-4):128-42. PubMed ID: 20888664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical depassivation of zero-valent iron for trichloroethene reduction.
    Chen L; Jin S; Fallgren PH; Swoboda-Colberg NG; Liu F; Colberg PJ
    J Hazard Mater; 2012 Nov; 239-240():265-9. PubMed ID: 23009798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.