These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 17055035)
1. Examination of arsenic(III) and (V) uptake by the desert plant species mesquite (Prosopis spp.) using X-ray absorption spectroscopy. Aldrich MV; Peralta-Videa JR; Parsons JG; Gardea-Torresdey JL Sci Total Environ; 2007 Jul; 379(2-3):249-55. PubMed ID: 17055035 [TBL] [Abstract][Full Text] [Related]
2. Toxicity of arsenic (III) and (V) on plant growth, element uptake, and total amylolytic activity of mesquite (Prosopis juliflora x P. velutina). Mokgalaka-Matlala NS; Flores-Tavizón E; Castillo-Michel H; Peralta-Videa JR; Gardea-Torresdey JL Int J Phytoremediation; 2008; 10(1):47-60. PubMed ID: 18709931 [TBL] [Abstract][Full Text] [Related]
3. Accumulation, speciation, and coordination of arsenic in an inbred line and a wild type cultivar of the desert plant species Chilopsis linearis (Desert willow). Castillo-Michel HA; Zuverza-Mena N; Parsons JG; Dokken KM; Duarte-Gardea M; Peralta-Videa JR; Gardea-Torresdey JL Phytochemistry; 2009 Mar; 70(4):540-5. PubMed ID: 19251289 [TBL] [Abstract][Full Text] [Related]
4. Uptake, transport and transformation of arsenate in radishes (Raphanus sativus). Smith PG; Koch I; Reimer KJ Sci Total Environ; 2008 Feb; 390(1):188-97. PubMed ID: 17976691 [TBL] [Abstract][Full Text] [Related]
5. Lead uptake and the effects of EDTA on lead-tissue concentrations in the desert species mesquite (Prosopis spp.). Aldrich MV; Ellzey lJ; Peralta-Videa JR; Gonzalez JH; Gardea-Torresdey JL Int J Phytoremediation; 2004; 6(3):195-207. PubMed ID: 15554473 [TBL] [Abstract][Full Text] [Related]
6. Arsenic localization and speciation in the root-soil interface of the desert plant Prosopis juliflora-velutina. Castillo-Michel H; Hernandez-Viezcas JA; Servin A; Peralia-Videa JR; Gardea-Torresdey JL Appl Spectrosc; 2012 Jun; 66(6):719-27. PubMed ID: 22732545 [TBL] [Abstract][Full Text] [Related]
7. Use of synchrotron- and plasma-based spectroscopic techniques to determine the uptake and biotransformation of chromium(III) and chromium(VI) by Parkinsonia aculeata. Zhao Y; Parsons JG; Peralta-Videa JR; Lopez-Moreno ML; Gardea-Torresdey JL Metallomics; 2009; 1(4):330-8. PubMed ID: 21305130 [TBL] [Abstract][Full Text] [Related]
8. Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. de la Rosa G; Peralta-Videa JR; Montes M; Parsons JG; Cano-Aguilera I; Gardea-Torresdey JL Chemosphere; 2004 Jun; 55(9):1159-68. PubMed ID: 15081756 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter. López ML; Peralta-Videa JR; Benitez T; Gardea-Torresdey JL Chemosphere; 2005 Oct; 61(4):595-8. PubMed ID: 16202815 [TBL] [Abstract][Full Text] [Related]
10. Uptake and reduction of Cr(VI) to Cr(III) by mesquite (Prosopis spp.): chromate-plant interaction in hydroponics and solid media studied using XAS. Aldrich MV; Gardea-Torresdey JL; Peralta-Videa JR; Parsons JG Environ Sci Technol; 2003 May; 37(9):1859-64. PubMed ID: 12775058 [TBL] [Abstract][Full Text] [Related]
11. Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Buendía-González L; Orozco-Villafuerte J; Cruz-Sosa F; Barrera-Díaz CE; Vernon-Carter EJ Bioresour Technol; 2010 Aug; 101(15):5862-7. PubMed ID: 20347590 [TBL] [Abstract][Full Text] [Related]
12. Phytoextraction potential of Prosopis juliflora (Sw.) DC. with specific reference to lead and cadmium. Varun M; D'Souza R; Pratas J; Paul MS Bull Environ Contam Toxicol; 2011 Jul; 87(1):45-9. PubMed ID: 21556781 [TBL] [Abstract][Full Text] [Related]
13. Arsenic uptake by common marsh fern Thelypteris palustris and its potential for phytoremediation. Anderson L; Walsh MM Sci Total Environ; 2007 Jul; 379(2-3):263-5. PubMed ID: 17113631 [TBL] [Abstract][Full Text] [Related]
14. Total and bioavailable arsenic concentration in arid soils and its uptake by native plants from the pre-Andean zones in Chile. Díaz O; Tapia Y; Pastene R; Montes S; Núñez N; Vélez D; Montoro R Bull Environ Contam Toxicol; 2011 Jun; 86(6):666-9. PubMed ID: 21484519 [TBL] [Abstract][Full Text] [Related]
15. Potential of Chilopsis linearis for gold phytomining: using XAS to determine gold reduction and nanoparticle formation within plant tissues. Rodriguez E; Parsons JG; Peralta-Videa JR; Cruz-Jimenez G; Romero-Gonzalez J; Sanchez-Salcido BE; Saupe GB; Duarte-Gardea M; Gardea-Torresdey JL Int J Phytoremediation; 2007; 9(2):133-47. PubMed ID: 18246721 [TBL] [Abstract][Full Text] [Related]
17. Differential effect of metals/metalloids on the growth and element uptake of mesquite plants obtained from plants grown at a copper mine tailing and commercial seeds. Haque N; Peralta-Videa JR; Duarte-Gardea M; Gardea-Torresdey JL Bioresour Technol; 2009 Dec; 100(24):6177-82. PubMed ID: 19631524 [TBL] [Abstract][Full Text] [Related]
18. Differential uptake and transport of trivalent and hexavalent chromium by tumbleweed (Salsola kali). Gardea-Torresdey JL; de la Rosa G; Peralta-Videa JR; Montes M; Cruz-Jimenez G; Cano-Aguilera I Arch Environ Contam Toxicol; 2005 Feb; 48(2):225-32. PubMed ID: 15696348 [TBL] [Abstract][Full Text] [Related]
19. Phytoremediation of lead (Pb) and arsenic (As) by Melastoma malabathricum L. from contaminated soil in separate exposure. Selamat SN; Abdullah SR; Idris M Int J Phytoremediation; 2014; 16(7-12):694-703. PubMed ID: 24933879 [TBL] [Abstract][Full Text] [Related]
20. Arsenic bioavailability in polluted mining soils and uptake by tolerant plants (El Cabaco mine, Spain). Casado M; Anawar HM; Garcia-Sanchez A; Regina IS Bull Environ Contam Toxicol; 2007 Jul; 79(1):29-35. PubMed ID: 17618375 [No Abstract] [Full Text] [Related] [Next] [New Search]