These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 17055321)

  • 1. Haversian cortical bone model with many radial microcracks: an elastic analytic solution.
    Najafi AR; Arshi AR; Eslami MR; Fariborz S; Moeinzadeh M
    Med Eng Phys; 2007 Jul; 29(6):708-17. PubMed ID: 17055321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fiber-ceramic matrix composite material model for osteonal cortical bone fracture micromechanics: solution of arbitrary microcracks interaction.
    Raeisi Najafi A; Arshi AR; Saffar KP; Eslami MR; Fariborz S; Moeinzadeh MH
    J Mech Behav Biomed Mater; 2009 Jul; 2(3):217-23. PubMed ID: 19627826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micromechanics fracture in osteonal cortical bone: a study of the interactions between microcrack propagation, microstructure and the material properties.
    Najafi AR; Arshi AR; Eslami MR; Fariborz S; Moeinzadeh MH
    J Biomech; 2007; 40(12):2788-95. PubMed ID: 17376454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of cortical bone elastic constants by a two-level micromechanical model using a generalized self-consistent method.
    Dong XN; Guo XE
    J Biomech Eng; 2006 Jun; 128(3):309-16. PubMed ID: 16706580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micromechanics of osteonal cortical bone fracture.
    Guo XE; Liang LC; Goldstein SA
    J Biomech Eng; 1998 Feb; 120(1):112-7. PubMed ID: 9675689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the mechanical characterization of compact bone structure using the homogenization theory.
    Aoubiza B; Crolet JM; Meunier A
    J Biomech; 1996 Dec; 29(12):1539-47. PubMed ID: 8945652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the degradation of the organic matrix on the microscopic fracture behavior of trabecular bone.
    Fantner GE; Birkedal H; Kindt JH; Hassenkam T; Weaver JC; Cutroni JA; Bosma BL; Bawazer L; Finch MM; Cidade GA; Morse DE; Stucky GD; Hansma PK
    Bone; 2004 Nov; 35(5):1013-22. PubMed ID: 15542025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micromechanics modeling of Haversian cortical bone properties.
    Hogan HA
    J Biomech; 1992 May; 25(5):549-56. PubMed ID: 1592860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study.
    Rémond A; Naïli S; Lemaire T
    Biomech Model Mechanobiol; 2008 Dec; 7(6):487-95. PubMed ID: 17990014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteon pullout in the equine third metacarpal bone: effects of ex vivo fatigue.
    Hiller LP; Stover SM; Gibson VA; Gibeling JC; Prater CS; Hazelwood SJ; Yeh OC; Martin RB
    J Orthop Res; 2003 May; 21(3):481-8. PubMed ID: 12706021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of bone microstructure on the initiation and growth of microcracks.
    O'Brien FJ; Taylor D; Clive Lee T
    J Orthop Res; 2005 Mar; 23(2):475-80. PubMed ID: 15734265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of interstitial bone microcracks on strain-induced fluid flow.
    Nguyen VH; Lemaire T; Naili S
    Biomech Model Mechanobiol; 2011 Dec; 10(6):963-72. PubMed ID: 21253808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tensile behavior of cortical bone: dependence of organic matrix material properties on bone mineral content.
    Kotha SP; Guzelsu N
    J Biomech; 2007; 40(1):36-45. PubMed ID: 16434048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo fatigue microcracks in human bone: material properties of the surrounding bone matrix.
    Zioupos P
    Eur J Morphol; 2005; 42(1-2):31-41. PubMed ID: 16123022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? Arguments from a multiscale approach.
    Hellmich C; Ulm FJ; Dormieux L
    Biomech Model Mechanobiol; 2004 Jun; 2(4):219-38. PubMed ID: 15054639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructural mechanical study of a transverse osteon under compressive loading: The role of fiber reinforcement and explanation of some geometrical and mechanical microscopic properties.
    De Micheli PO; Witzel U
    J Biomech; 2011 May; 44(8):1588-92. PubMed ID: 21397233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micromechanical modelling of cortical bone.
    Mullins LP; McGarry JP; Bruzzi MS; McHugh PE
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):159-69. PubMed ID: 17558645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human cortical bone: the SiNuPrOs model.
    Predoi-Racila M; Crolet JM
    Comput Methods Biomech Biomed Engin; 2008 Apr; 11(2):169-87. PubMed ID: 18297496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical modelling of the mechanical behaviour of an osteon with microcracks.
    Giner E; Arango C; Vercher A; Javier Fuenmayor F
    J Mech Behav Biomed Mater; 2014 Sep; 37():109-24. PubMed ID: 24907671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear deformation and fracture of human cortical bone.
    Tang T; Ebacher V; Cripton P; Guy P; McKay H; Wang R
    Bone; 2015 Feb; 71():25-35. PubMed ID: 25305520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.