BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 17055486)

  • 1. Effect of hindlimb suspension on activation and MHC content of triceps brachii and on the representation of forepaw on the sensorimotor cortex.
    Canu MH; Stevens L; Falempin M
    Exp Neurol; 2007 Feb; 203(2):521-30. PubMed ID: 17055486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of the soleus muscle after short- and long-term disuse induced by hindlimb unloading: effects on the electrical properties and myosin heavy chain profile.
    Desaphy JF; Pierno S; Liantonio A; De Luca A; Didonna MP; Frigeri A; Nicchia GP; Svelto M; Camerino C; Zallone A; Camerino DC
    Neurobiol Dis; 2005 Mar; 18(2):356-65. PubMed ID: 15686964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiologically adaptive changes of the L5 afferent neurogram and of the rat soleus EMG activity during 14 days of hindlimb unloading and recovery.
    De-Doncker L; Kasri M; Picquet F; Falempin M
    J Exp Biol; 2005 Dec; 208(Pt 24):4585-92. PubMed ID: 16326940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hindlimb unloading affects cortical motor maps and decreases corticospinal excitability.
    Langlet C; Bastide B; Canu MH
    Exp Neurol; 2012 Sep; 237(1):211-7. PubMed ID: 22750326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of IGF-1 in cortical plasticity and functional deficit induced by sensorimotor restriction.
    Mysoet J; Dupont E; Bastide B; Canu MH
    Behav Brain Res; 2015 Sep; 290():117-23. PubMed ID: 25958232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-term plasticity in primary somatosensory cortex of the rat after hindlimb suspension.
    Langlet C; Canu MH; Picquet F; Falempin M
    J Gravit Physiol; 1999 Jul; 6(1):P59-60. PubMed ID: 11543027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 3D analysis of fore- and hindlimb motion during overground and ladder walking: comparison of control and unloaded rats.
    Canu MH; Garnier C
    Exp Neurol; 2009 Jul; 218(1):98-108. PubMed ID: 19393236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell size and oxidative enzyme activity of rat biceps brachii and triceps brachii muscles.
    Matsumoto A; Nagatomo F; Mori A; Ohira Y; Ishihara A
    J Physiol Sci; 2007 Oct; 57(5):311-6. PubMed ID: 17971264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dendritic spine remodeling induced by hindlimb unloading in adult rat sensorimotor cortex.
    Trinel D; Picquet F; Bastide B; Canu MH
    Behav Brain Res; 2013 Jul; 249():1-7. PubMed ID: 23608484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of normal development of skeletal muscle in neonatal rats on load bearing.
    Ohira Y; Tanaka T; Yoshinaga T; Kawano F; Nomura T; Nonaka I; Allen DL; Roy RR; Edgerton VR
    J Gravit Physiol; 2000 Jul; 7(2):P27-30. PubMed ID: 12697541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity-dependent changes in the electrophysiological properties of regular spiking neurons in the sensorimotor cortex of the rat in vitro.
    Canu MH; Picquet F; Bastide B; Falempin M
    Behav Brain Res; 2010 Jun; 209(2):289-94. PubMed ID: 20144900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptations in myosin heavy chain profile in chronically unloaded muscles.
    Talmadge RJ; Roy RR; Bodine-Fowler SC; Pierotti DJ; Edgerton VR
    Basic Appl Myol; 1995; 5(2):117-37. PubMed ID: 11539270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation of rat soleus muscle spindles after 21 days of hindlimb unloading.
    Rosant C; Nagel MD; Pérot C
    Exp Neurol; 2006 Jul; 200(1):191-9. PubMed ID: 16624292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Sarcomeric cytoskeletal proteins and myosin phenotype in stretched soleus of hindlimb-suspended rats].
    Podlubnaia ZA; Vikhliantsev IM; Mukhina AM; Nemirovskaia TL; Shenkman BS
    Biofizika; 2004; 49(3):424-9. PubMed ID: 15327201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reorganization of motor cortex and impairment of motor performance induced by hindlimb unloading are partially reversed by cortical IGF-1 administration.
    Mysoet J; Canu MH; Gillet C; Fourneau J; Garnier C; Bastide B; Dupont E
    Behav Brain Res; 2017 Jan; 317():434-443. PubMed ID: 27717815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Readiness potential and movement initiation in the rat.
    Seki T; Gemba H; Matsuzaki R; Nakao K
    Jpn J Physiol; 2005 Feb; 55(1):1-9. PubMed ID: 15796784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreased capillarization and a shift to fast myosin heavy chain IIx in the biceps brachii muscle from young adults with spastic paresis.
    Pontén EM; Stål PS
    J Neurol Sci; 2007 Feb; 253(1-2):25-33. PubMed ID: 17196619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-sensitive enhancement of motor learning with the less-affected forelimb after unilateral sensorimotor cortex lesions in rats.
    Hsu JE; Jones TA
    Eur J Neurosci; 2005 Oct; 22(8):2069-80. PubMed ID: 16262644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties and fiber type composition of chronically inactive muscles.
    Roy RR; Zhong H; Monti RJ; Vallance KA; Kim JA; Edgerton VR
    J Gravit Physiol; 2000 Jul; 7(2):P103-4. PubMed ID: 12697552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The postural reaction to the drop of a hindlimb support in the standing cat remains following sensorimotor cortical ablation.
    Dufossé M; Macpherson J; Massion J; Sybirska E
    Neurosci Lett; 1985 Apr; 55(3):297-303. PubMed ID: 4011034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.