These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 17055490)
21. Genome-wide analysis reveals new roles for the activation domains of the Saccharomyces cerevisiae heat shock transcription factor (Hsf1) during the transient heat shock response. Eastmond DL; Nelson HC J Biol Chem; 2006 Oct; 281(43):32909-21. PubMed ID: 16926161 [TBL] [Abstract][Full Text] [Related]
22. Fine-tuning of the Msn2/4-mediated yeast stress responses as revealed by systematic deletion of Msn2/4 partners. Sadeh A; Movshovich N; Volokh M; Gheber L; Aharoni A Mol Biol Cell; 2011 Sep; 22(17):3127-38. PubMed ID: 21757539 [TBL] [Abstract][Full Text] [Related]
23. Disruption of YCP4 enhances freeze-thaw tolerance in Saccharomyces cerevisiae. Kim HS Biotechnol Lett; 2022 Mar; 44(3):503-511. PubMed ID: 35124760 [TBL] [Abstract][Full Text] [Related]
24. Hsf1p and Msn2/4p cooperate in the expression of Saccharomyces cerevisiae genes HSP26 and HSP104 in a gene- and stress type-dependent manner. Amorós M; Estruch F Mol Microbiol; 2001 Mar; 39(6):1523-32. PubMed ID: 11260469 [TBL] [Abstract][Full Text] [Related]
25. [Alternative ways of stress regulation in cells of Saccharomyces cerevisiae: transcriptional activators Msn2 and Msn4]. Erkina TI; Lavrova MV; Erkin AM Tsitologiia; 2009; 51(3):271-8. PubMed ID: 19435282 [TBL] [Abstract][Full Text] [Related]
26. Role of Gal11, a component of the RNA polymerase II mediator in stress-induced hyperphosphorylation of Msn2 in Saccharomyces cerevisiae. Lallet S; Garreau H; Garmendia-Torres C; Szestakowska D; Boy-Marcotte E; Quevillon-Chéruel S; Jacquet M Mol Microbiol; 2006 Oct; 62(2):438-52. PubMed ID: 17020582 [TBL] [Abstract][Full Text] [Related]
27. Yeast transcription factor Msn2 binds to G4 DNA. Duy DL; Kim N Nucleic Acids Res; 2023 Oct; 51(18):9643-9657. PubMed ID: 37615577 [TBL] [Abstract][Full Text] [Related]
28. Rsp5 is required for the nuclear export of mRNA of HSF1 and MSN2/4 under stress conditions in Saccharomyces cerevisiae. Haitani Y; Takagi H Genes Cells; 2008 Feb; 13(2):105-16. PubMed ID: 18233954 [TBL] [Abstract][Full Text] [Related]
29. Yeast adapt to near-freezing temperatures by STRE/Msn2,4-dependent induction of trehalose synthesis and certain molecular chaperones. Kandror O; Bretschneider N; Kreydin E; Cavalieri D; Goldberg AL Mol Cell; 2004 Mar; 13(6):771-81. PubMed ID: 15053871 [TBL] [Abstract][Full Text] [Related]
30. Very low amounts of glucose cause repression of the stress-responsive gene HSP12 in Saccharomyces cerevisiae. de Groot E; Bebelman JP; Mager WH; Planta RJ Microbiology (Reading); 2000 Feb; 146 ( Pt 2)():367-375. PubMed ID: 10708375 [TBL] [Abstract][Full Text] [Related]
31. Zinc starvation induces a stress response in Saccharomyces cerevisiae that is mediated by the Msn2p and Msn4p transcriptional activators. Gauci VJ; Beckhouse AG; Lyons V; Beh EJ; Rogers PJ; Dawes IW; Higgins VJ FEMS Yeast Res; 2009 Dec; 9(8):1187-95. PubMed ID: 19702872 [TBL] [Abstract][Full Text] [Related]
32. The glucose sensor Snf1 and the transcription factors Msn2 and Msn4 regulate transcription of the vacuolar iron importer gene Li L; Kaplan J; Ward DM J Biol Chem; 2017 Sep; 292(37):15577-15586. PubMed ID: 28760824 [TBL] [Abstract][Full Text] [Related]
33. Yeast protein phosphatase 2A-Cdc55 regulates the transcriptional response to hyperosmolarity stress by regulating Msn2 and Msn4 chromatin recruitment. Reiter W; Klopf E; De Wever V; Anrather D; Petryshyn A; Roetzer A; Niederacher G; Roitinger E; Dohnal I; Görner W; Mechtler K; Brocard C; Schüller C; Ammerer G Mol Cell Biol; 2013 Mar; 33(5):1057-72. PubMed ID: 23275436 [TBL] [Abstract][Full Text] [Related]
34. A dual role for PP1 in shaping the Msn2-dependent transcriptional response to glucose starvation. De Wever V; Reiter W; Ballarini A; Ammerer G; Brocard C EMBO J; 2005 Dec; 24(23):4115-23. PubMed ID: 16281053 [TBL] [Abstract][Full Text] [Related]
35. Oxidative stress tolerance of a spore clone isolated from Shirakami kodama yeast depends on altered regulation of Msn2 leading to enhanced expression of ROS-degrading enzymes. Nakazawa N; Yanata H; Ito N; Kaneta E; Takahashi K J Gen Appl Microbiol; 2018 Sep; 64(4):149-157. PubMed ID: 29607878 [TBL] [Abstract][Full Text] [Related]
36. Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae. Boy-Marcotte E; Perrot M; Bussereau F; Boucherie H; Jacquet M J Bacteriol; 1998 Mar; 180(5):1044-52. PubMed ID: 9495741 [TBL] [Abstract][Full Text] [Related]
37. The role of the protein kinase A pathway in the response to alkaline pH stress in yeast. Casado C; González A; Platara M; Ruiz A; Ariño J Biochem J; 2011 Sep; 438(3):523-33. PubMed ID: 21749328 [TBL] [Abstract][Full Text] [Related]
38. The DNA-binding domain of yeast Hsf1 regulates both DNA-binding and transcriptional activities. Yamamoto A; Sakurai H Biochem Biophys Res Commun; 2006 Aug; 346(4):1324-9. PubMed ID: 16806072 [TBL] [Abstract][Full Text] [Related]
39. Protein kinase A regulates constitutive expression of small heat-shock genes in an Msn2/4p-independent and Hsf1p-dependent manner in Saccharomyces cerevisiae. Ferguson SB; Anderson ES; Harshaw RB; Thate T; Craig NL; Nelson HC Genetics; 2005 Mar; 169(3):1203-14. PubMed ID: 15545649 [TBL] [Abstract][Full Text] [Related]
40. Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF. Liu XD; Liu PC; Santoro N; Thiele DJ EMBO J; 1997 Nov; 16(21):6466-77. PubMed ID: 9351828 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]