These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 17055789)
1. Poly-epsilon-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Wiria FE; Leong KF; Chua CK; Liu Y Acta Biomater; 2007 Jan; 3(1):1-12. PubMed ID: 17055789 [TBL] [Abstract][Full Text] [Related]
2. Blends of poly-(epsilon-caprolactone) and polysaccharides in tissue engineering applications. Ciardelli G; Chiono V; Vozzi G; Pracella M; Ahluwalia A; Barbani N; Cristallini C; Giusti P Biomacromolecules; 2005; 6(4):1961-76. PubMed ID: 16004434 [TBL] [Abstract][Full Text] [Related]
3. Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering. Wiria FE; Chua CK; Leong KF; Quah ZY; Chandrasekaran M; Lee MW J Mater Sci Mater Med; 2008 Mar; 19(3):989-96. PubMed ID: 17665112 [TBL] [Abstract][Full Text] [Related]
4. Selective laser sintering of biocompatible polymers for applications in tissue engineering. Tan KH; Chua CK; Leong KF; Cheah CM; Gui WS; Tan WS; Wiria FE Biomed Mater Eng; 2005; 15(1-2):113-24. PubMed ID: 15623935 [TBL] [Abstract][Full Text] [Related]
5. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Williams JM; Adewunmi A; Schek RM; Flanagan CL; Krebsbach PH; Feinberg SE; Hollister SJ; Das S Biomaterials; 2005 Aug; 26(23):4817-27. PubMed ID: 15763261 [TBL] [Abstract][Full Text] [Related]
6. Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process. Heo SJ; Kim SE; Wei J; Hyun YT; Yun HS; Kim DH; Shin JW; Shin JW J Biomed Mater Res A; 2009 Apr; 89(1):108-16. PubMed ID: 18431758 [TBL] [Abstract][Full Text] [Related]
7. Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects. Chua CK; Leong KF; Tan KH; Wiria FE; Cheah CM J Mater Sci Mater Med; 2004 Oct; 15(10):1113-21. PubMed ID: 15516872 [TBL] [Abstract][Full Text] [Related]
8. A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering. Chim H; Hutmacher DW; Chou AM; Oliveira AL; Reis RL; Lim TC; Schantz JT Int J Oral Maxillofac Surg; 2006 Oct; 35(10):928-34. PubMed ID: 16762529 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Park SA; Lee SH; Kim WD Bioprocess Biosyst Eng; 2011 May; 34(4):505-13. PubMed ID: 21170553 [TBL] [Abstract][Full Text] [Related]
11. Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Tan KH; Chua CK; Leong KF; Cheah CM; Cheang P; Abu Bakar MS; Cha SW Biomaterials; 2003 Aug; 24(18):3115-23. PubMed ID: 12895584 [TBL] [Abstract][Full Text] [Related]
12. Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts. Gupta D; Venugopal J; Mitra S; Giri Dev VR; Ramakrishna S Biomaterials; 2009 Apr; 30(11):2085-94. PubMed ID: 19167752 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering. Kolan KC; Leu MC; Hilmas GE; Brown RF; Velez M Biofabrication; 2011 Jun; 3(2):025004. PubMed ID: 21636879 [TBL] [Abstract][Full Text] [Related]
14. Inner strut morphology is the key parameter in producing highly porous and mechanically stable poly(ε-caprolactone) scaffolds via selective laser sintering. Tortorici M; Gayer C; Torchio A; Cho S; Schleifenbaum JH; Petersen A Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111986. PubMed ID: 33812614 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Shor L; Güçeri S; Wen X; Gandhi M; Sun W Biomaterials; 2007 Dec; 28(35):5291-7. PubMed ID: 17884162 [TBL] [Abstract][Full Text] [Related]
16. Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering. Duan B; Cheung WL; Wang M Biofabrication; 2011 Mar; 3(1):015001. PubMed ID: 21245522 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Duan B; Wang M; Zhou WY; Cheung WL; Li ZY; Lu WW Acta Biomater; 2010 Dec; 6(12):4495-505. PubMed ID: 20601244 [TBL] [Abstract][Full Text] [Related]
18. Characterization and dynamic mechanical analysis of selective laser sintered hydroxyapatite-filled polymeric composites. Zhang Y; Hao L; Savalani MM; Harris RA; Tanner KE J Biomed Mater Res A; 2008 Sep; 86(3):607-16. PubMed ID: 18022838 [TBL] [Abstract][Full Text] [Related]
19. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction. Dorj B; Won JE; Kim JH; Choi SJ; Shin US; Kim HW J Biomed Mater Res A; 2013 Jun; 101(6):1670-81. PubMed ID: 23184729 [TBL] [Abstract][Full Text] [Related]
20. Characterization of a poly-epsilon-caprolactone polymeric drug delivery device built by selective laser sintering. Leong KF; Wiria FE; Chua CK; Li SH Biomed Mater Eng; 2007; 17(3):147-57. PubMed ID: 17502691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]