These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 17056049)

  • 1. Optimizing cardiac material parameters with a genetic algorithm.
    Nair AU; Taggart DG; Vetter FJ
    J Biomech; 2007; 40(7):1646-50. PubMed ID: 17056049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an in vivo method for determining material properties of passive myocardium.
    Remme EW; Hunter PJ; Smiseth O; Stevens C; Rabben SI; Skulstad H; Angelsen BB
    J Biomech; 2004 May; 37(5):669-78. PubMed ID: 15046996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maximum a posteriori strategy for the simultaneous motion and material property estimation of the heart.
    Liu H; Shi Ast P
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):378-89. PubMed ID: 19272914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A combined FEM/genetic algorithm for vascular soft tissue elasticity estimation.
    Khalil AS; Bouma BE; Kaazempur Mofrad MR
    Cardiovasc Eng; 2006 Sep; 6(3):93-102. PubMed ID: 16967325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element modeling of the left atrium to facilitate the design of an endoscopic atrial retractor.
    Jernigan SR; Buckner GD; Eischen JW; Cormier DR
    J Biomech Eng; 2007 Dec; 129(6):825-37. PubMed ID: 18067386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of human passive muscles for impact loads using genetic algorithm and inverse finite element methods.
    Chawla A; Mukherjee S; Karthikeyan B
    Biomech Model Mechanobiol; 2009 Feb; 8(1):67-76. PubMed ID: 18293021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myocardial material parameter estimation: a non-homogeneous finite element study from simple shear tests.
    Schmid H; O'Callaghan P; Nash MP; Lin W; LeGrice IJ; Smaill BH; Young AA; Hunter PJ
    Biomech Model Mechanobiol; 2008 Jun; 7(3):161-73. PubMed ID: 17487519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of the hyperelastic properties of tissue slices with tumour inclusion.
    O'Hagan JJ; Samani A
    Phys Med Biol; 2008 Dec; 53(24):7087-106. PubMed ID: 19015576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Three-dimensional motion analysis of right ventricular based on an electrophysiologic-mechanical composite heart model].
    Xia L; Ye X; Huo M; Zhang Y; Don J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):110-5. PubMed ID: 17333902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined genetic algorithm and multiple linear regression (GA-MLR) optimizer: Application to multi-exponential fluorescence decay surface.
    Fisz JJ
    J Phys Chem A; 2006 Dec; 110(48):12977-85. PubMed ID: 17134156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse analysis of constitutive models: biological soft tissues.
    Lei F; Szeri AZ
    J Biomech; 2007; 40(4):936-40. PubMed ID: 16730739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards accurate numerical method for monodomain models using a realistic heart geometry.
    Belhamadia Y; Fortin A; Bourgault Y
    Math Biosci; 2009 Aug; 220(2):89-101. PubMed ID: 19447119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force transducer design: a new approach combining nonlinear finite element analysis and robust design.
    Oggero E; Pagnacco G; Berme N; Kinzel GL; Luscher AF
    Biomed Sci Instrum; 2001; 37():49-54. PubMed ID: 11347440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modeling of multicellular constructs with the material point method.
    Guilkey JE; Hoying JB; Weiss JA
    J Biomech; 2006; 39(11):2074-86. PubMed ID: 16095601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A finite shell element for heart mitral valve leaflet mechanics, with large deformations and 3D constitutive material model.
    Weinberg EJ; Kaazempur Mofrad MR
    J Biomech; 2007; 40(3):705-11. PubMed ID: 16574127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Requirements for comparing the performance of finite element models of biological structures.
    Dumont ER; Grosse IR; Slater GJ
    J Theor Biol; 2009 Jan; 256(1):96-103. PubMed ID: 18834892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of the failure of ventricular tissue due to deep penetration: the impact of constitutive properties.
    Forsell C; Gasser TC
    J Biomech; 2011 Jan; 44(1):45-51. PubMed ID: 20825943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An approach to the mechanical constitutive modelling of arterial tissue based on homogenization and optimization.
    Speirs DC; de Souza Neto EA; Perić D
    J Biomech; 2008 Aug; 41(12):2673-80. PubMed ID: 18674766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nonlinear material properties of liver tissue determined from no-slip uniaxial compression experiments.
    Roan E; Vemaganti K
    J Biomech Eng; 2007 Jun; 129(3):450-6. PubMed ID: 17536913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.