These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 17056049)

  • 21. Determination of displacement, stress- and strain-distribution in the human heart: a FE-model on the basis of MR imaging.
    Schmid P; Stuber M; Boesiger P; Hess OM; Niederer P
    Technol Health Care; 1995 Dec; 3(3):209-14. PubMed ID: 8749867
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microwave imaging using the finite-element method and a sensitivity analysis approach.
    Rekanos IT; Panas SM; Tsiboukis TD
    IEEE Trans Med Imaging; 1999 Nov; 18(11):1108-14. PubMed ID: 10661328
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modelling and convergence in arterial wall simulations using a parallel FETI solution strategy.
    Brands D; Klawonn A; Rheinbach O; Schröder J
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):569-83. PubMed ID: 18608341
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational model for early cardiac looping.
    Ramasubramanian A; Latacha KS; Benjamin JM; Voronov DA; Ravi A; Taber LA
    Ann Biomed Eng; 2006 Aug; 34(8):1655-69. PubMed ID: 16732433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mesh-morphing algorithms for specimen-specific finite element modeling.
    Sigal IA; Hardisty MR; Whyne CM
    J Biomech; 2008; 41(7):1381-9. PubMed ID: 18397789
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the derivation of passive 3D material parameters from 1D stress-strain data of hydrostats.
    Winkel B; Schleichardt A
    J Biomech; 2011 Jul; 44(11):2113-7. PubMed ID: 21696743
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Wolff's law-based continuum topology optimization method and its application in biomechanics].
    Cai K; Zhang H; Luo Y; Chen B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):331-5. PubMed ID: 18610617
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Digital image correlation and finite element modelling as a method to determine mechanical properties of human soft tissue in vivo.
    Moerman KM; Holt CA; Evans SL; Simms CK
    J Biomech; 2009 May; 42(8):1150-3. PubMed ID: 19362312
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro technique in estimation of passive mechanical properties of bovine heart part II. Constitutive relation and finite element analysis.
    Ghaemi H; Behdinan K; Spence AD
    Med Eng Phys; 2009 Jan; 31(1):83-91. PubMed ID: 18539073
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonhomogeneous strain from sparse marker arrays for analysis of transmural myocardial mechanics.
    Kindberg K; Karlsson M; Ingels NB; Criscione JC
    J Biomech Eng; 2007 Aug; 129(4):603-10. PubMed ID: 17655482
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A generalized finite difference method for modeling cardiac electrical activation on arbitrary, irregular computational meshes.
    Trew ML; Smaill BH; Bullivant DP; Hunter PJ; Pullan AJ
    Math Biosci; 2005 Dec; 198(2):169-89. PubMed ID: 16140344
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An inverse approach to determining myocardial material properties.
    Moulton MJ; Creswell LL; Actis RL; Myers KW; Vannier MW; Szabó BA; Pasque MK
    J Biomech; 1995 Aug; 28(8):935-48. PubMed ID: 7673261
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An energetically coherent lumped parameter model of the left ventricle specially developed for educational purposes.
    Díaz-Zuccarini V; LeFèvre J
    Comput Biol Med; 2007 Jun; 37(6):774-84. PubMed ID: 17052704
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Fluid-structure interaction analysis based on a 3D finite element model of human left ventricular].
    Wu B; Zhang K; Wan H; Liu Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Feb; 30(1):149-56. PubMed ID: 23488156
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A large-strain finite element formulation for biological tissues with application to mitral valve leaflet tissue mechanics.
    Weinberg EJ; Kaazempur-Mofrad MR
    J Biomech; 2006; 39(8):1557-61. PubMed ID: 16038913
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Improvement on simulation algorithm of excitation propagation in heart modeling].
    Zhou H; Guo Y; Feng H; Wang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Sep; 19(3):518-21. PubMed ID: 12557537
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of elastomeric foam parameters for simulations of complex loading.
    Petre MT; Erdemir A; Cavanagh PR
    Comput Methods Biomech Biomed Engin; 2006 Aug; 9(4):231-42. PubMed ID: 17132531
    [TBL] [Abstract][Full Text] [Related]  

  • 38. First-order system least-squares (FOSLS) for modeling blood flow.
    Heys JJ; DeGroff CG; Manteuffel TA; McCormick SF
    Med Eng Phys; 2006 Jul; 28(6):495-503. PubMed ID: 16275152
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical characterization of atherosclerotic arteries using finite-element modeling: feasibility study on mock arteries.
    Pazos V; Mongrain R; Tardif JC
    IEEE Trans Biomed Eng; 2010 Jun; 57(6):1520-8. PubMed ID: 20172784
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation.
    Ning X; Zhu Q; Lanir Y; Margulies SS
    J Biomech Eng; 2006 Dec; 128(6):925-33. PubMed ID: 17154695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.