BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

977 related articles for article (PubMed ID: 17056079)

  • 1. Metabolism of 76Se-methylselenocysteine compared with that of 77Se-selenomethionine and 82Se-selenite.
    Suzuki KT; Doi C; Suzuki N
    Toxicol Appl Pharmacol; 2006 Dec; 217(2):185-95. PubMed ID: 17056079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous tracing of 76Se-selenite and 77Se-selenomethionine by absolute labeling and speciation.
    Suzuki KT; Somekawa L; Kurasaki K; Suzuki N
    Toxicol Appl Pharmacol; 2006 Nov; 217(1):43-50. PubMed ID: 16956638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Availability and metabolism of 77Se-methylseleninic acid compared simultaneously with those of three related selenocompounds.
    Suzuki KT; Ohta Y; Suzuki N
    Toxicol Appl Pharmacol; 2006 Nov; 217(1):51-62. PubMed ID: 16962623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferential organ distribution of methylselenol source Se-methylselenocysteine relative to methylseleninic acid.
    Suzuki KT; Tsuji Y; Ohta Y; Suzuki N
    Toxicol Appl Pharmacol; 2008 Feb; 227(1):76-83. PubMed ID: 18035386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speciation analysis of selenium metabolites in urine and breath by HPLC- and GC-inductively coupled plasma-MS after administration of selenomethionine and methylselenocysteine to rats.
    Ohta Y; Kobayashi Y; Konishi S; Hirano S
    Chem Res Toxicol; 2009 Nov; 22(11):1795-801. PubMed ID: 19715347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution and reuse of 76Se-selenosugar in selenium-deficient rats.
    Suzuki KT; Somekawa L; Suzuki N
    Toxicol Appl Pharmacol; 2006 Oct; 216(2):303-8. PubMed ID: 16842833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selenium metabolism in rats with long-term ingestion of Se-methylselenocysteine using enriched stable isotopes.
    Tsuji Y; Suzuki N; T Suzuki K; Ogra Y
    J Toxicol Sci; 2009 Apr; 34(2):191-200. PubMed ID: 19336976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selenocysteine beta-lyase and methylselenol demethylase in the metabolism of Se-methylated selenocompounds into selenide.
    Suzuki KT; Kurasaki K; Suzuki N
    Biochim Biophys Acta; 2007 Jul; 1770(7):1053-61. PubMed ID: 17451884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic transformation of methylseleninic acid through key selenium intermediate selenide.
    Suzuki KT; Kurasaki K; Ogawa S; Suzuki N
    Toxicol Appl Pharmacol; 2006 Sep; 215(2):189-97. PubMed ID: 16600319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of chemical species of selenium on maternal transfer during pregnancy and lactation.
    Anan Y; Ogra Y; Somekawa L; Suzuki KT
    Life Sci; 2009 Jun; 84(25-26):888-93. PubMed ID: 19389411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methylation and demethylation of intermediates selenide and methylselenol in the metabolism of selenium.
    Ohta Y; Suzuki KT
    Toxicol Appl Pharmacol; 2008 Jan; 226(2):169-77. PubMed ID: 17988700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of animal and plant selenometabolites in roots of a selenium accumulator, Brassica rapa var. peruviridis, by speciation.
    Ogra Y; Katayama A; Ogihara Y; Yawata A; Anan Y
    Metallomics; 2013 May; 5(5):429-36. PubMed ID: 23348393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic pathway for selenium in the body: speciation by HPLC-ICP MS with enriched Se.
    Suzuki KT; Ogra Y
    Food Addit Contam; 2002 Oct; 19(10):974-83. PubMed ID: 12443560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous analysis of mercury and selenium species including chiral forms of selenomethionine in human urine and serum by HPLC column-switching coupled to ICP-MS.
    Moreno F; García-Barrera T; Gómez-Ariza JL
    Analyst; 2010 Oct; 135(10):2700-5. PubMed ID: 20725669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological availability of selenosugars in rats.
    Juresa D; Blanusa M; Francesconi KA; Kienzl N; Kuehnelt D
    Chem Biol Interact; 2007 Jul; 168(3):203-10. PubMed ID: 17532309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of L-selenomethionine and selenite by probiotic bacteria: in vitro and in vivo studies.
    Krittaphol W; Wescombe PA; Thomson CD; McDowell A; Tagg JR; Fawcett JP
    Biol Trace Elem Res; 2011 Dec; 144(1-3):1358-69. PubMed ID: 21494803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution and metabolism of selenite and selenomethionine in the Japanese quail.
    Anan Y; Ohbo A; Tani Y; Hatakeyama Y; Yawata A; Ogra Y
    Metallomics; 2012 May; 4(5):457-62. PubMed ID: 22526144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotransformation of L-selenomethionine and selenite in rat gut contents.
    Krittaphol W; McDowell A; Thomson CD; Mikov M; Fawcett JP
    Biol Trace Elem Res; 2011 Feb; 139(2):188-96. PubMed ID: 20229173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selenium metabolites in human urine after ingestion of selenite, L-selenomethionine, or DL-selenomethionine: a quantitative case study by HPLC/ICPMS.
    Kuehnelt D; Kienzl N; Traar P; Le NH; Francesconi KA; Ochi T
    Anal Bioanal Chem; 2005 Sep; 383(2):235-46. PubMed ID: 16132136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cystathionine gamma-lyase contributes to selenomethionine detoxification and cytosolic glutathione peroxidase biosynthesis in mouse liver.
    Okuno T; Ueno H; Nakamuro K
    Biol Trace Elem Res; 2006 Feb; 109(2):155-71. PubMed ID: 16444005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.