These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
511 related articles for article (PubMed ID: 17056127)
1. Bioenergetics and the formation of mitochondrial reactive oxygen species. Adam-Vizi V; Chinopoulos C Trends Pharmacol Sci; 2006 Dec; 27(12):639-45. PubMed ID: 17056127 [TBL] [Abstract][Full Text] [Related]
2. [Role of mitochondria in reactive oxygen species generation and removal; relevance to signaling and programmed cell death]. Czarna M; Jarmuszkiewicz W Postepy Biochem; 2006; 52(2):145-56. PubMed ID: 17078504 [TBL] [Abstract][Full Text] [Related]
4. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems. Blokhina O; Fagerstedt KV Physiol Plant; 2010 Apr; 138(4):447-62. PubMed ID: 20059731 [TBL] [Abstract][Full Text] [Related]
5. Mitochondrial dysfunction in rat brain with aging Involvement of complex I, reactive oxygen species and cardiolipin. Petrosillo G; Matera M; Casanova G; Ruggiero FM; Paradies G Neurochem Int; 2008 Nov; 53(5):126-31. PubMed ID: 18657582 [TBL] [Abstract][Full Text] [Related]
7. Mitochondrial complex I dysfunction in rat heart with aging: critical role of reactive oxygen species and cardiolipin. Petrosillo G; Matera M; Moro N; Ruggiero FM; Paradies G Free Radic Biol Med; 2009 Jan; 46(1):88-94. PubMed ID: 18973802 [TBL] [Abstract][Full Text] [Related]
8. Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Tahara EB; Navarete FD; Kowaltowski AJ Free Radic Biol Med; 2009 May; 46(9):1283-97. PubMed ID: 19245829 [TBL] [Abstract][Full Text] [Related]
9. Implications of enzyme deficiencies on mitochondrial energy metabolism and reactive oxygen species formation of neurons involved in rotenone-induced Parkinson's disease: a model-based analysis. Berndt N; Holzhütter HG; Bulik S FEBS J; 2013 Oct; 280(20):5080-93. PubMed ID: 23937586 [TBL] [Abstract][Full Text] [Related]
10. Intracellular generation of reactive oxygen species by mitochondria. Nohl H; Gille L; Staniek K Biochem Pharmacol; 2005 Mar; 69(5):719-23. PubMed ID: 15710349 [TBL] [Abstract][Full Text] [Related]
11. Seasonality of energetic functioning and production of reactive oxygen species by lugworm (Arenicola marina) mitochondria exposed to acute temperature changes. Keller M; Sommer AM; Pörtner HO; Abele D J Exp Biol; 2004 Jun; 207(Pt 14):2529-38. PubMed ID: 15184524 [TBL] [Abstract][Full Text] [Related]
12. Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. Chen Y; McMillan-Ward E; Kong J; Israels SJ; Gibson SB J Cell Sci; 2007 Dec; 120(Pt 23):4155-66. PubMed ID: 18032788 [TBL] [Abstract][Full Text] [Related]
13. Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition. Hansson MJ; Månsson R; Morota S; Uchino H; Kallur T; Sumi T; Ishii N; Shimazu M; Keep MF; Jegorov A; Elmér E Free Radic Biol Med; 2008 Aug; 45(3):284-94. PubMed ID: 18466779 [TBL] [Abstract][Full Text] [Related]
14. Uncoupling is without an effect on the production of reactive oxygen species by in situ synaptic mitochondria. Tretter L; Adam-Vizi V J Neurochem; 2007 Dec; 103(5):1864-71. PubMed ID: 17854347 [TBL] [Abstract][Full Text] [Related]
15. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. Sas K; Robotka H; Toldi J; Vécsei L J Neurol Sci; 2007 Jun; 257(1-2):221-39. PubMed ID: 17462670 [TBL] [Abstract][Full Text] [Related]
16. Transformation by retroviral vectors of bone marrow-derived mesenchymal cells induces mitochondria-dependent cAMP-sensitive reactive oxygen species production. Piccoli C; Scrima R; Ripoli M; Di Ianni M; Del Papa B; D'Aprile A; Quarato G; Martelli MP; Servillo G; Ligas C; Boffoli D; Tabilio A; Capitanio N Stem Cells; 2008 Nov; 26(11):2843-54. PubMed ID: 18787213 [TBL] [Abstract][Full Text] [Related]
17. Role for mitochondrial reactive oxygen species in brain lipid sensing: redox regulation of food intake. Benani A; Troy S; Carmona MC; Fioramonti X; Lorsignol A; Leloup C; Casteilla L; Pénicaud L Diabetes; 2007 Jan; 56(1):152-60. PubMed ID: 17192477 [TBL] [Abstract][Full Text] [Related]
18. Palmitate increases superoxide production through mitochondrial electron transport chain and NADPH oxidase activity in skeletal muscle cells. Lambertucci RH; Hirabara SM; Silveira Ldos R; Levada-Pires AC; Curi R; Pithon-Curi TC J Cell Physiol; 2008 Sep; 216(3):796-804. PubMed ID: 18446788 [TBL] [Abstract][Full Text] [Related]
19. Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain. Kaur P; Radotra B; Minz RW; Gill KD Neurotoxicology; 2007 Nov; 28(6):1208-19. PubMed ID: 17850875 [TBL] [Abstract][Full Text] [Related]
20. Mitochondrial Complex I: structure, function, and implications in neurodegeneration. Lenaz G; Baracca A; Fato R; Genova ML; Solaini G Ital J Biochem; 2006; 55(3-4):232-53. PubMed ID: 17274529 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]