BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 17057085)

  • 21. Leishmaniasis host response loci (lmr1-3) modify disease severity through a Th1/Th2-independent pathway.
    Elso CM; Roberts LJ; Smyth GK; Thomson RJ; Baldwin TM; Foote SJ; Handman E
    Genes Immun; 2004 Mar; 5(2):93-100. PubMed ID: 14668789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Critical role of dendritic cells in determining the Th1/Th2 balance upon Leishmania major infection.
    Suzue K; Kobayashi S; Takeuchi T; Suzuki M; Koyasu S
    Int Immunol; 2008 Mar; 20(3):337-43. PubMed ID: 18195051
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immunopathogenic competences of Leishmania (V.) braziliensis and L. (L.) amazonensis in American cutaneous leishmaniasis.
    Silveira FT; Lainson R; De Castro Gomes CM; Laurenti MD; Corbett CE
    Parasite Immunol; 2009 Aug; 31(8):423-31. PubMed ID: 19646206
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonhealing infection despite Th1 polarization produced by a strain of Leishmania major in C57BL/6 mice.
    Anderson CF; Mendez S; Sacks DL
    J Immunol; 2005 Mar; 174(5):2934-41. PubMed ID: 15728505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vaccination with plasmacytoid dendritic cells induces protection against infection with Leishmania major in mice.
    Remer KA; Apetrei C; Schwarz T; Linden C; Moll H
    Eur J Immunol; 2007 Sep; 37(9):2463-73. PubMed ID: 17705130
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Leishmania major: immune response in BALB/c mice immunized with stress-inducible protein 1 encapsulated in liposomes.
    Badiee A; Jaafari MR; Khamesipour A
    Exp Parasitol; 2007 Feb; 115(2):127-34. PubMed ID: 16979165
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancement of peritoneal macrophage phagocytic activity against Leishmania major by garlic (Allium sativum) treatment.
    Ghazanfari T; Hassan ZM; Khamesipour A
    J Ethnopharmacol; 2006 Feb; 103(3):333-7. PubMed ID: 16213117
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Re-examination of the immunosuppressive mechanisms mediating non-cure of Leishmania infection in mice.
    Sacks D; Anderson C
    Immunol Rev; 2004 Oct; 201():225-38. PubMed ID: 15361244
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Leishmania major H-line attenuated under pressure of gentamicin, induces a Th1 response which protects susceptible BALB/c mice against infection with virulent L. major.
    Daneshvar H; Burchmore R; Hagan P; Phillips RS
    Parasitology; 2009 Sep; 136(11):1243-50. PubMed ID: 19646303
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Susceptibility to infectious diseases: Leishmania as a paradigm.
    Locksley RM; Pingel S; Lacy D; Wakil AE; Bix M; Fowell DJ
    J Infect Dis; 1999 Mar; 179 Suppl 2():S305-8. PubMed ID: 10081500
    [TBL] [Abstract][Full Text] [Related]  

  • 31. BOB.1/OBF.1 controls the balance of TH1 and TH2 immune responses.
    Brunner C; Sindrilaru A; Girkontaite I; Fischer KD; Sunderkötter C; Wirth T
    EMBO J; 2007 Jul; 26(13):3191-202. PubMed ID: 17568779
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Leishmania major CorA-like magnesium transporters play a critical role in parasite development and virulence.
    Zhu Y; Davis A; Smith BJ; Curtis J; Handman E
    Int J Parasitol; 2009 May; 39(6):713-23. PubMed ID: 19136005
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of mannose receptor during experimental leishmaniasis.
    Akilov OE; Kasuboski RE; Carter CR; McDowell MA
    J Leukoc Biol; 2007 May; 81(5):1188-96. PubMed ID: 17261547
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of liposome charge on immune response generated in BALB/c mice immunized with recombinant major surface glycoprotein of Leishmania (rgp63).
    Badiee A; Jaafari MR; Khamesipour A; Samiei A; Soroush D; Kheiri MT; Barkhordari F; McMaster WR; Mahboudi F
    Exp Parasitol; 2009 Apr; 121(4):362-9. PubMed ID: 19211022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental cutaneous Leishmaniasis: a powerful model to study in vivo the mechanisms underlying genetic differences in Th subset differentiation.
    Louis J; Gumy A; Voigt H; Röcken M; Launois P
    Eur J Dermatol; 2002; 12(4):316-8. PubMed ID: 12095873
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease?
    McMahon-Pratt D; Alexander J
    Immunol Rev; 2004 Oct; 201():206-24. PubMed ID: 15361243
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pharmacological evaluation of anti-leishmanial activity by in vivo nitric oxide modulation in Balb/c mice infected with Leishmania major MRHO/IR/75/ER: an Iranian strain of cutaneous leishmaniasis.
    Nahrevanian H; Farahmand M; Aghighi Z; Assmar M; Amirkhani A
    Exp Parasitol; 2007 Jul; 116(3):233-40. PubMed ID: 17335813
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Germ-free mice produce high levels of interferon-gamma in response to infection with Leishmania major but fail to heal lesions.
    Oliveira MR; Tafuri WL; Afonso LC; Oliveira MA; Nicoli JR; Vieira EC; Scott P; Melo MN; Vieira LQ
    Parasitology; 2005 Oct; 131(Pt 4):477-88. PubMed ID: 16174412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The development of effector and memory T cells in cutaneous leishmaniasis: the implications for vaccine development.
    Scott P; Artis D; Uzonna J; Zaph C
    Immunol Rev; 2004 Oct; 201():318-38. PubMed ID: 15361250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heterogeneity of wild Leishmania major isolates in experimental murine pathogenicity and specific immune response.
    Kébaïer C; Louzir H; Chenik M; Ben Salah A; Dellagi K
    Infect Immun; 2001 Aug; 69(8):4906-15. PubMed ID: 11447167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.