These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 17057188)
1. Animal models of inflammatory bowel disease: lessons from enteric infections. Eckmann L Ann N Y Acad Sci; 2006 Aug; 1072():28-38. PubMed ID: 17057188 [TBL] [Abstract][Full Text] [Related]
2. Enteric bacteria, lipopolysaccharides and related cytokines in inflammatory bowel disease: biological and clinical significance. Caradonna L; Amati L; Magrone T; Pellegrino NM; Jirillo E; Caccavo D J Endotoxin Res; 2000; 6(3):205-14. PubMed ID: 11052175 [TBL] [Abstract][Full Text] [Related]
3. Mouse models of intestinal inflammation as tools to understand the pathogenesis of inflammatory bowel disease. Uhlig HH; Powrie F Eur J Immunol; 2009 Aug; 39(8):2021-6. PubMed ID: 19672896 [TBL] [Abstract][Full Text] [Related]
4. Infections in the immunopathogenesis of chronic inflammatory bowel disease. Merger M; Croitoru K Semin Immunol; 1998 Feb; 10(1):69-78. PubMed ID: 9529657 [TBL] [Abstract][Full Text] [Related]
5. Animal models of intestinal inflammation: clues to the pathogenesis of inflammatory bowel disease. Powrie F; Uhlig H Novartis Found Symp; 2004; 263():164-74; discussion 174-8, 211-8. PubMed ID: 15669641 [TBL] [Abstract][Full Text] [Related]
6. A role for Campylobacter jejuni-induced enteritis in inflammatory bowel disease? Kalischuk LD; Buret AG Am J Physiol Gastrointest Liver Physiol; 2010 Jan; 298(1):G1-9. PubMed ID: 19875702 [TBL] [Abstract][Full Text] [Related]
7. Genetic and spontaneous models of inflammatory bowel disease in rodents: evidence for abnormalities in mucosal immune regulation. Powrie F; Leach MW Ther Immunol; 1995 Apr; 2(2):115-23. PubMed ID: 8729882 [TBL] [Abstract][Full Text] [Related]
12. Lyn deficiency leads to increased microbiota-dependent intestinal inflammation and susceptibility to enteric pathogens. Roberts ME; Bishop JL; Fan X; Beer JL; Kum WW; Krebs DL; Huang M; Gill N; Priatel JJ; Finlay BB; Harder KW J Immunol; 2014 Nov; 193(10):5249-63. PubMed ID: 25339668 [TBL] [Abstract][Full Text] [Related]
13. Host defences to Citrobacter rodentium. MacDonald TT; Frankel G; Dougan G; Goncalves NS; Simmons C Int J Med Microbiol; 2003 Apr; 293(1):87-93. PubMed ID: 12755369 [TBL] [Abstract][Full Text] [Related]
14. Microbial-epithelial cell crosstalk during inflammation: the host response. Kagnoff MF Ann N Y Acad Sci; 2006 Aug; 1072():313-20. PubMed ID: 17057211 [TBL] [Abstract][Full Text] [Related]
15. Signposts to therapy: recent advances in inflammatory bowel disease research. Hamilton J CMAJ; 1996 May; 154(10):1513-6. PubMed ID: 8625002 [TBL] [Abstract][Full Text] [Related]
16. Interplay of commensal and pathogenic bacteria, genetic mutations, and immunoregulatory defects in the pathogenesis of inflammatory bowel diseases. Packey CD; Sartor RB J Intern Med; 2008 Jun; 263(6):597-606. PubMed ID: 18479259 [TBL] [Abstract][Full Text] [Related]
17. MyD88 signalling plays a critical role in host defence by controlling pathogen burden and promoting epithelial cell homeostasis during Citrobacter rodentium-induced colitis. Gibson DL; Ma C; Bergstrom KS; Huang JT; Man C; Vallance BA Cell Microbiol; 2008 Mar; 10(3):618-31. PubMed ID: 17979981 [TBL] [Abstract][Full Text] [Related]
18. VEGF-A links angiogenesis and inflammation in inflammatory bowel disease pathogenesis. Scaldaferri F; Vetrano S; Sans M; Arena V; Straface G; Stigliano E; Repici A; Sturm A; Malesci A; Panes J; Yla-Herttuala S; Fiocchi C; Danese S Gastroenterology; 2009 Feb; 136(2):585-95.e5. PubMed ID: 19013462 [TBL] [Abstract][Full Text] [Related]
19. Toll-like receptor 2 plays a critical role in maintaining mucosal integrity during Citrobacter rodentium-induced colitis. Gibson DL; Ma C; Rosenberger CM; Bergstrom KS; Valdez Y; Huang JT; Khan MA; Vallance BA Cell Microbiol; 2008 Feb; 10(2):388-403. PubMed ID: 17910742 [TBL] [Abstract][Full Text] [Related]