BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 17058077)

  • 1. Chloroform degradation by butane-grown cells of Rhodococcus aetherovorans BCP1.
    Frascari D; Pinelli D; Nocentini M; Fedi S; Pii Y; Zannoni D
    Appl Microbiol Biotechnol; 2006 Nov; 73(2):421-8. PubMed ID: 17058077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic and inhibition studies for the aerobic cometabolism of 1,1,1-trichloroethane, 1,1-dichloroethylene, and 1,1-dichloroethane by a butane-grown mixed culture.
    Kim Y; Arp DJ; Semprini L
    Biotechnol Bioeng; 2002 Dec; 80(5):498-508. PubMed ID: 12355460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloroform aerobic cometabolism by butane-growing Rhodococcus aetherovorans BCP1 in continuous-flow biofilm reactors.
    Ciavarelli R; Cappelletti M; Fedi S; Pinelli D; Frascari D
    Bioprocess Biosyst Eng; 2012 Jun; 35(5):667-81. PubMed ID: 22042557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerobic cometabolism of chloroform by butane-grown microorganisms: long-term monitoring of depletion rates and isolation of a high-performing strain.
    Frascari D; Zannoni A; Fedi S; Pii Y; Zannoni D; Pinelli D; Nocentini M
    Biodegradation; 2005 Mar; 16(2):147-58. PubMed ID: 15730025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cometabolic transformation of cis-1,2-dichloroethylene and cis-1,2-dichloroethylene epoxide by a butane-grown mixed culture.
    Kim Y; Semprini L
    Water Sci Technol; 2005; 52(8):125-31. PubMed ID: 16312959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome and Phenotype Microarray Analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: Genetic Determinants and Metabolic Abilities with Environmental Relevance.
    Orro A; Cappelletti M; D'Ursi P; Milanesi L; Di Canito A; Zampolli J; Collina E; Decorosi F; Viti C; Fedi S; Presentato A; Zannoni D; Di Gennaro P
    PLoS One; 2015; 10(10):e0139467. PubMed ID: 26426997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of diethyl ether degradation in Rhodococcus sp. strain DEE5151 by glutaraldehyde and ethyl vinyl ether.
    Kim YH; Engesser KH
    FEMS Microbiol Lett; 2005 Feb; 243(2):317-22. PubMed ID: 15686830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloroform Cometabolism by Butane-Grown CF8, Pseudomonas butanovora, and Mycobacterium vaccae JOB5 and Methane-Grown Methylosinus trichosporium OB3b.
    Hamamura N; Page C; Long T; Semprini L; Arp DJ
    Appl Environ Microbiol; 1997 Sep; 63(9):3607-13. PubMed ID: 16535693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term aerobic cometabolism of a chlorinated solvent mixture by vinyl chloride-, methane- and propane-utilizing biomasses.
    Frascari D; Pinelli D; Nocentini M; Zannoni A; Fedi S; Baleani E; Zannoni D; Farneti A; Battistelli A
    J Hazard Mater; 2006 Nov; 138(1):29-39. PubMed ID: 16879912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioaugmentation with butane-utilizing microorganisms to promote in situ cometabolic treatment of 1,1,1-trichloroethane and 1,1-dichloroethene.
    Semprini L; Dolan ME; Hopkins GD; McCarty PL
    J Contam Hydrol; 2009 Jan; 103(3-4):157-67. PubMed ID: 19022526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes.
    Cappelletti M; Presentato A; Milazzo G; Turner RJ; Fedi S; Frascari D; Zannoni D
    Front Microbiol; 2015; 6():393. PubMed ID: 26029173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial degradation of chloroform.
    Cappelletti M; Frascari D; Zannoni D; Fedi S
    Appl Microbiol Biotechnol; 2012 Dec; 96(6):1395-409. PubMed ID: 23093177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of cyclohexane and hexane degradation by Rhodococcus sp. EC1.
    Lee EH; Cho KS
    Chemosphere; 2008 Apr; 71(9):1738-44. PubMed ID: 18289631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradation of p-nitrophenol by Rhodococcus sp. CN6 with high cell surface hydrophobicity.
    Zhang J; Sun Z; Li Y; Peng X; Li W; Yan Y
    J Hazard Mater; 2009 Apr; 163(2-3):723-8. PubMed ID: 18718714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization of propane-enhanced N-nitrosodimethylamine degradation by two actinomycetales.
    Sharp JO; Sales CM; Alvarez-Cohen L
    Biotechnol Bioeng; 2010 Dec; 107(6):924-32. PubMed ID: 20717971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkane utilization by Rhodococcus strain NTU-1 alone and in its natural association with Bacillus fusiformis L-1 and Ochrobactrum sp.
    Sayavedra-Soto LA; Chang WN; Lin TK; Ho CL; Liu HS
    Biotechnol Prog; 2006; 22(5):1368-73. PubMed ID: 17022676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Kinetics of the degradation of aliphatic hydrocarbons by the bacteria Rhodococcus ruber and Rhodococcus erythropolis].
    Zhukov DV; Murygina VP; Kaliuzhnyĭ SV
    Prikl Biokhim Mikrobiol; 2007; 43(6):657-63. PubMed ID: 18173107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pollutant degradation by a Methylocystis strain SB2 grown on ethanol: bioremediation via facultative methanotrophy.
    Im J; Semrau JD
    FEMS Microbiol Lett; 2011 May; 318(2):137-42. PubMed ID: 21362021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A combined method for determining inhibition type, kinetic parameters, and inhibition coefficients for aerobic cometabolism of 1,1,1-trichloroethane by a butane-grown mixed culture.
    Kim Y; Arp DJ; Semprini L
    Biotechnol Bioeng; 2002 Mar; 77(5):564-76. PubMed ID: 11788954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of quinoline by Rhodococcus sp. QL2 isolated from activated sludge.
    Zhu SN; Liu DQ; Fan L; Ni JR
    J Hazard Mater; 2008 Dec; 160(2-3):289-94. PubMed ID: 18420344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.