These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 17059244)
1. Parallelization of the integral equation formulation of the polarizable continuum model for higher-order response functions. Ferrighi L; Frediani L; Fossgaard E; Ruud K J Chem Phys; 2006 Oct; 125(15):154112. PubMed ID: 17059244 [TBL] [Abstract][Full Text] [Related]
2. Superlinear scaling in master-slave quantum chemical calculations using in-core storage of two-electron integrals. Fossgård E; Ruud K J Comput Chem; 2006 Feb; 27(3):326-33. PubMed ID: 16365846 [TBL] [Abstract][Full Text] [Related]
3. Degenerate four-wave mixing in solution by cubic response theory and the polarizable continuum model. Ferrighi L; Frediani L; Ruud K J Phys Chem B; 2007 Aug; 111(30):8965-73. PubMed ID: 17628096 [TBL] [Abstract][Full Text] [Related]
4. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Marenich AV; Cramer CJ; Truhlar DG J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259 [TBL] [Abstract][Full Text] [Related]
5. Gauge-origin-independent magnetizabilities of solvated molecules using the polarizable continuum model. Ferrighi L; Marchesan D; Ruud K; Frediani L; Coriani S J Chem Phys; 2005 Nov; 123(20):204104. PubMed ID: 16351237 [TBL] [Abstract][Full Text] [Related]
6. Radiative and nonradiative decay rates of a molecule close to a metal particle of complex shape. Andreussi O; Corni S; Mennucci B; Tomasi J J Chem Phys; 2004 Nov; 121(20):10190-202. PubMed ID: 15549894 [TBL] [Abstract][Full Text] [Related]
7. Formation and relaxation of excited states in solution: a new time dependent polarizable continuum model based on time dependent density functional theory. Caricato M; Mennucci B; Tomasi J; Ingrosso F; Cammi R; Corni S; Scalmani G J Chem Phys; 2006 Mar; 124(12):124520. PubMed ID: 16599710 [TBL] [Abstract][Full Text] [Related]
8. Parallelization of four-component calculations. II. Symmetry-driven parallelization of the 4-Spinor CCSD algorithm. Pernpointner M; Visscher L J Comput Chem; 2003 Apr; 24(6):754-9. PubMed ID: 12666167 [TBL] [Abstract][Full Text] [Related]
9. Wavelet formulation of the polarizable continuum model. Weijo V; Randrianarivony M; Harbrecht H; Frediani L J Comput Chem; 2010 May; 31(7):1469-77. PubMed ID: 19834886 [TBL] [Abstract][Full Text] [Related]
10. Second-harmonic generation of solvated molecules using multiconfigurational self-consistent-field quadratic response theory and the polarizable continuum model. Frediani L; Agren H; Ferrighi L; Ruud K J Chem Phys; 2005 Oct; 123(14):144117. PubMed ID: 16238384 [TBL] [Abstract][Full Text] [Related]
11. Combined density functional/polarizable continuum model study of magnetochiral birefringence: can theory and experiment be brought to agreement? Jansík B; Rizzo A; Frediani L; Ruud K; Coriani S J Chem Phys; 2006 Dec; 125(23):234105. PubMed ID: 17190545 [TBL] [Abstract][Full Text] [Related]
12. A density matrix-based method for the linear-scaling calculation of dynamic second- and third-order properties at the Hartree-Fock and Kohn-Sham density functional theory levels. Kussmann J; Ochsenfeld C J Chem Phys; 2007 Nov; 127(20):204103. PubMed ID: 18052415 [TBL] [Abstract][Full Text] [Related]
13. Quantum cluster theory for the polarizable continuum model. I. The CCSD level with analytical first and second derivatives. Cammi R J Chem Phys; 2009 Oct; 131(16):164104. PubMed ID: 19894924 [TBL] [Abstract][Full Text] [Related]
14. Electronic excitation energies in solution at equation of motion CCSD level within a state specific polarizable continuum model approach. Caricato M; Mennucci B; Scalmani G; Trucks GW; Frisch MJ J Chem Phys; 2010 Feb; 132(8):084102. PubMed ID: 20192285 [TBL] [Abstract][Full Text] [Related]
15. Excitation energy transfer (EET) between molecules in condensed matter: a novel application of the polarizable continuum model (PCM). Iozzi MF; Mennucci B; Tomasi J; Cammi R J Chem Phys; 2004 Apr; 120(15):7029-40. PubMed ID: 15267604 [TBL] [Abstract][Full Text] [Related]
16. Density functional self-consistent quantum mechanics/molecular mechanics theory for linear and nonlinear molecular properties: Applications to solvated water and formaldehyde. Nielsen CB; Christiansen O; Mikkelsen KV; Kongsted J J Chem Phys; 2007 Apr; 126(15):154112. PubMed ID: 17461619 [TBL] [Abstract][Full Text] [Related]
17. Ab initio molecular dynamics using hybrid density functionals. Guidon M; Schiffmann F; Hutter J; VandeVondele J J Chem Phys; 2008 Jun; 128(21):214104. PubMed ID: 18537412 [TBL] [Abstract][Full Text] [Related]
18. Building cavities in a fluid of spherical or rod-like particles: a contribution to the solvation free energy in isotropic and anisotropic polarizable continuum model. Benzi C; Cossi M; Improta R; Barone V J Comput Chem; 2005 Aug; 26(11):1096-105. PubMed ID: 15929089 [TBL] [Abstract][Full Text] [Related]
19. Linear-scaling method for calculating nuclear magnetic resonance chemical shifts using gauge-including atomic orbitals within Hartree-Fock and density-functional theory. Kussmann J; Ochsenfeld C J Chem Phys; 2007 Aug; 127(5):054103. PubMed ID: 17688330 [TBL] [Abstract][Full Text] [Related]
20. Theoretical study on the properties of linear and cyclic amides in gas phase and water solution. Aparicio-Martínez S; Hall KR; Balbuena PB J Phys Chem A; 2006 Jul; 110(29):9183-93. PubMed ID: 16854032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]