These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 17059244)

  • 21. Dispersion and repulsion contributions to the solvation free energy: comparison of quantum mechanical and classical approaches in the polarizable continuum model.
    Curutchet C; Orozco M; Luque FJ; Mennucci B; Tomasi J
    J Comput Chem; 2006 Nov; 27(15):1769-80. PubMed ID: 16917857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum mechanical/molecular mechanical/continuum style solvation model: linear response theory, variational treatment, and nuclear gradients.
    Li H
    J Chem Phys; 2009 Nov; 131(18):184103. PubMed ID: 19916594
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Excited-state polarizabilities of solvated molecules using cubic response theory and the polarizable continuum model.
    Ferrighi L; Frediani L; Ruud K
    J Chem Phys; 2010 Jan; 132(2):024107. PubMed ID: 20095663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Linear-scaling calculation of static and dynamic polarizabilities in Hartree-Fock and density functional theory for periodic systems.
    Izmaylov AF; Brothers EN; Scuseria GE
    J Chem Phys; 2006 Dec; 125(22):224105. PubMed ID: 17176132
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solvation of N3- at the water surface: the polarizable continuum model approach.
    Bondesson L; Frediani L; Agren H; Mennucci B
    J Phys Chem B; 2006 Jun; 110(23):11361-8. PubMed ID: 16771407
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving the efficiency and convergence of geometry optimization with the polarizable continuum model: new energy gradients and molecular surface tessellation.
    Li H; Jensen JH
    J Comput Chem; 2004 Sep; 25(12):1449-62. PubMed ID: 15224389
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-photon absorption of [2.2]paracyclophane derivatives in solution: a theoretical investigation.
    Ferrighi L; Frediani L; Fossgaard E; Ruud K
    J Chem Phys; 2007 Dec; 127(24):244103. PubMed ID: 18163666
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A general, recursive, and open-ended response code.
    Ringholm M; Jonsson D; Ruud K
    J Comput Chem; 2014 Mar; 35(8):622-33. PubMed ID: 24500816
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hartree-Fock and Kohn-Sham time-dependent response theory in a second-quantization atomic-orbital formalism suitable for linear scaling.
    Kjaergaard T; Jørgensen P; Olsen J; Coriani S; Helgaker T
    J Chem Phys; 2008 Aug; 129(5):054106. PubMed ID: 18698887
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Parallel algorithm for the computation of the Hartree-Fock exchange matrix: gas phase and periodic parallel ONX.
    Weber V; Challacombe M
    J Chem Phys; 2006 Sep; 125(10):104110. PubMed ID: 16999518
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantum-mechanical studies of NMR properties of solutes in liquid crystals: a new strategy to determine orientational order parameters.
    Pavanello M; Mennucci B; Ferrarini A
    J Chem Phys; 2005 Feb; 122(6):064906. PubMed ID: 15740407
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analytic ab initio calculations of coherent anti-Stokes Raman scattering (CARS).
    Thorvaldsen AJ; Ferrighi L; Ruud K; Agren H; Coriani S; Jørgensen P
    Phys Chem Chem Phys; 2009 Apr; 11(13):2293-304. PubMed ID: 19305904
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Linear-scaling calculation of Hartree-Fock exchange energy with non-orthogonal generalised Wannier functions.
    Dziedzic J; Hill Q; Skylaris CK
    J Chem Phys; 2013 Dec; 139(21):214103. PubMed ID: 24320360
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Implementation of divide-and-conquer method including Hartree-Fock exchange interaction.
    Akama T; Kobayashi M; Nakai H
    J Comput Chem; 2007 Sep; 28(12):2003-12. PubMed ID: 17455367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tighter multipole-based integral estimates and parallel implementation of linear-scaling AO-MP2 theory.
    Doser B; Lambrecht DS; Ochsenfeld C
    Phys Chem Chem Phys; 2008 Jun; 10(23):3335-44. PubMed ID: 18535715
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A density-functional approach to polarizable models: a Kim-Gordon response density interaction potential for molecular simulations.
    Tabacchi G; Hutter J; Mundy CJ
    J Chem Phys; 2005 Aug; 123(7):074108. PubMed ID: 16229560
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Continuous surface charge polarizable continuum models of solvation. I. General formalism.
    Scalmani G; Frisch MJ
    J Chem Phys; 2010 Mar; 132(11):114110. PubMed ID: 20331284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ab initio electron propagators in molecules with strong electron-phonon interaction: II. Electron Green's function.
    Dahnovsky Y
    J Chem Phys; 2007 Jul; 127(1):014104. PubMed ID: 17627334
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solvent effects on Raman optical activity spectra calculated using the polarizable continuum model.
    Pecul M; Lamparska E; Cappelli C; Frediani L; Ruud K
    J Phys Chem A; 2006 Mar; 110(8):2807-15. PubMed ID: 16494393
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of molecular geometry, exchange-correlation functional, and solvent effects in the modeling of vertical excitation energies in phthalocyanines using time-dependent density functional theory (TDDFT) and polarized continuum model TDDFT methods: can modern computational chemistry methods explain experimental controversies?
    Nemykin VN; Hadt RG; Belosludov RV; Mizuseki H; Kawazoe Y
    J Phys Chem A; 2007 Dec; 111(50):12901-13. PubMed ID: 18004829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.