These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17059247)

  • 1. Optimal grids for generalized finite basis and discrete variable representations: definition and method of calculation.
    Szalay V
    J Chem Phys; 2006 Oct; 125(15):154115. PubMed ID: 17059247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variational properties of the discrete variable representation: discrete variable representation via effective operators.
    Szalay V; Ádám P
    J Chem Phys; 2012 Aug; 137(6):064118. PubMed ID: 22897266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrete variable representation in electronic structure theory: quadrature grids for least-squares tensor hypercontraction.
    Parrish RM; Hohenstein EG; Martínez TJ; Sherrill CD
    J Chem Phys; 2013 May; 138(19):194107. PubMed ID: 23697409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonproduct quadrature grids for solving the vibrational Schrödinger equation.
    Avila G; Carrington T
    J Chem Phys; 2009 Nov; 131(17):174103. PubMed ID: 19894994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the efficiency of treating singularities in triatomic variational vibrational computations. The vibrational states of H(+)3 up to dissociation.
    Szidarovszky T; Császár AG; Czakó G
    Phys Chem Chem Phys; 2010 Aug; 12(29):8373-86. PubMed ID: 20526489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using a pruned basis, a non-product quadrature grid, and the exact Watson normal-coordinate kinetic energy operator to solve the vibrational Schrödinger equation for C2H4.
    Avila G; Carrington T
    J Chem Phys; 2011 Aug; 135(6):064101. PubMed ID: 21842920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using nonproduct quadrature grids to solve the vibrational Schrödinger equation in 12D.
    Avila G; Carrington T
    J Chem Phys; 2011 Feb; 134(5):054126. PubMed ID: 21303111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solving the vibrational Schrödinger equation using bases pruned to include strongly coupled functions and compatible quadratures.
    Avila G; Carrington T
    J Chem Phys; 2012 Nov; 137(17):174108. PubMed ID: 23145718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the spin-orbit interaction within the graphically contracted function method.
    Brozell SR; Shepard R
    J Phys Chem A; 2009 Nov; 113(45):12741-7. PubMed ID: 19736962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matrix-free application of Hamiltonian operators in Coifman wavelet bases.
    Acevedo R; Lombardini R; Johnson BR
    J Chem Phys; 2010 Jun; 132(24):244112. PubMed ID: 20590186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new basis set for molecular bending degrees of freedom.
    Jutier L
    J Chem Phys; 2010 Jul; 133(3):034107. PubMed ID: 20649308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Infinite Order Discrete Variable Representation of an Effective Mass Hamiltonian: Application to Exciton Wave Functions in Quantum Confined Nanostructures.
    Kaledin AL; Lian T; Hill CL; Musaev DG
    J Chem Theory Comput; 2014 Aug; 10(8):3409-16. PubMed ID: 26588309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy of a hybrid finite-element method for solving a scattering Schrödinger equation.
    Power J; Rawitscher G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066707. PubMed ID: 23368078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The accuracy of the Gaussian-and-finite-element-Coulomb (GFC) method for the calculation of Coulomb integrals.
    Przybytek M; Helgaker T
    J Chem Phys; 2013 Aug; 139(5):054114. PubMed ID: 23927250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces.
    Heaps CW; Mazziotti DA
    J Chem Phys; 2016 Apr; 144(16):164108. PubMed ID: 27131532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The multigrid POTFIT (MGPF) method: grid representations of potentials for quantum dynamics of large systems.
    Peláez D; Meyer HD
    J Chem Phys; 2013 Jan; 138(1):014108. PubMed ID: 23298029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generalized CC-TDSCF and LCSA: The system-energy representation.
    López-López S; Nest M; Martinazzo R
    J Chem Phys; 2011 Jan; 134(1):014102. PubMed ID: 21218992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualizing the zero order basis of the spectroscopic Hamiltonian.
    Barnes GL; Kellman ME
    J Chem Phys; 2012 Jan; 136(2):024114. PubMed ID: 22260571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate and efficient algorithm for Bader charge integration.
    Yu M; Trinkle DR
    J Chem Phys; 2011 Feb; 134(6):064111. PubMed ID: 21322665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of transmission probability by solving an eigenvalue problem.
    Bubin S; Varga K
    J Phys Condens Matter; 2010 Nov; 22(46):465306. PubMed ID: 21403367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.