These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 17059247)

  • 1. Optimal grids for generalized finite basis and discrete variable representations: definition and method of calculation.
    Szalay V
    J Chem Phys; 2006 Oct; 125(15):154115. PubMed ID: 17059247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite basis representations with nondirect product basis functions having structure similar to that of spherical harmonics.
    Czakó G; Szalay V; Császár AG
    J Chem Phys; 2006 Jan; 124(1):14110. PubMed ID: 16409027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variational properties of the discrete variable representation: discrete variable representation via effective operators.
    Szalay V; Ádám P
    J Chem Phys; 2012 Aug; 137(6):064118. PubMed ID: 22897266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrete variable representation in electronic structure theory: quadrature grids for least-squares tensor hypercontraction.
    Parrish RM; Hohenstein EG; Martínez TJ; Sherrill CD
    J Chem Phys; 2013 May; 138(19):194107. PubMed ID: 23697409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonproduct quadrature grids for solving the vibrational Schrödinger equation.
    Avila G; Carrington T
    J Chem Phys; 2009 Nov; 131(17):174103. PubMed ID: 19894994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the efficiency of treating singularities in triatomic variational vibrational computations. The vibrational states of H(+)3 up to dissociation.
    Szidarovszky T; Császár AG; Czakó G
    Phys Chem Chem Phys; 2010 Aug; 12(29):8373-86. PubMed ID: 20526489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A coherent discrete variable representation method for multidimensional systems in physics.
    Yu HG
    J Chem Phys; 2005 Apr; 122(16):164107. PubMed ID: 15945672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Layered discrete variable representations and their application within the multiconfigurational time-dependent Hartree approach.
    Manthe U
    J Chem Phys; 2009 Feb; 130(5):054109. PubMed ID: 19206960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full-dimensional quantum calculations of vibrational spectra of six-atom molecules. I. Theory and numerical results.
    Yu HG
    J Chem Phys; 2004 Feb; 120(5):2270-84. PubMed ID: 15268366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treating singularities present in the Sutcliffe-Tennyson vibrational Hamiltonian in orthogonal internal coordinates.
    Czakó G; Szalay V; Császár AG; Furtenbacher T
    J Chem Phys; 2005 Jan; 122(2):024101. PubMed ID: 15638566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculating multidimensional discrete variable representations from cubature formulas.
    Degani I; Tannor DJ
    J Phys Chem A; 2006 Apr; 110(16):5395-410. PubMed ID: 16623468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multidimensional discrete variable representation basis obtained by simultaneous diagonalization.
    Dawes R; Carrington T
    J Chem Phys; 2004 Jul; 121(2):726-36. PubMed ID: 15260599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of a nondirect-product basis for treating singularities in triatomic rotational-vibrational calculations.
    Czakó G; Furtenbacher T; Barletta P; Császár AG; Szalay V; Sutcliffe BT
    Phys Chem Chem Phys; 2007 Jul; 9(26):3407-15. PubMed ID: 17664964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio molecular dynamics with discrete variable representation basis sets: techniques and application to liquid water.
    Lee HS; Tuckerman ME
    J Phys Chem A; 2006 Apr; 110(16):5549-60. PubMed ID: 16623489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using a pruned basis, a non-product quadrature grid, and the exact Watson normal-coordinate kinetic energy operator to solve the vibrational Schrödinger equation for C2H4.
    Avila G; Carrington T
    J Chem Phys; 2011 Aug; 135(6):064101. PubMed ID: 21842920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel implementation of a direct method for calculating electrostatic potentials.
    Jusélius J; Sundholm D
    J Chem Phys; 2007 Mar; 126(9):094101. PubMed ID: 17362098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the use of optimal internal vibrational coordinates for symmetrical bent triatomic molecules.
    Zúñiga J; Picón JA; Bastida A; Requena A
    J Chem Phys; 2005 Jun; 122(22):224319. PubMed ID: 15974680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degeneracy in discrete variable representations: general considerations and application to the multiconfigurational time-dependent Hartree approach.
    van Harrevelt R; Manthe U
    J Chem Phys; 2004 Sep; 121(12):5623-8. PubMed ID: 15366985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapped grid methods for long-range molecules and cold collisions.
    Willner K; Dulieu O; Masnou-Seeuws F
    J Chem Phys; 2004 Jan; 120(2):548-61. PubMed ID: 15267889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerically stable optimized effective potential method with balanced Gaussian basis sets.
    Hesselmann A; Götz AW; Della Sala F; Görling A
    J Chem Phys; 2007 Aug; 127(5):054102. PubMed ID: 17688329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.