These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 17059280)

  • 41. Antenna chemistry with metallic single-walled carbon nanotubes.
    Duque JG; Pasquali M; Schmidt HK
    J Am Chem Soc; 2008 Nov; 130(46):15340-7. PubMed ID: 18942783
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Raman spectroscopy of charge transfer interactions between single wall carbon nanotubes and [FeFe] hydrogenase.
    Blackburn JL; Svedruzic D; McDonald TJ; Kim YH; King PW; Heben MJ
    Dalton Trans; 2008 Oct; (40):5454-61. PubMed ID: 19082027
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Field emission properties of N-doped capped single-walled carbon nanotubes: a first-principles density-functional study.
    Qiao L; Zheng WT; Xu H; Zhang L; Jiang Q
    J Chem Phys; 2007 Apr; 126(16):164702. PubMed ID: 17477619
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional molecules from single wall carbon nanotubes. Photoinduced solubility of short single wall carbon nanotube residues by covalent anchoring of 2,4,6-triarylpyrylium units.
    Alvaro M; Aprile C; Ferrer B; Garcia H
    J Am Chem Soc; 2007 May; 129(17):5647-55. PubMed ID: 17411044
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interaction of atomic hydrogen with single-walled carbon nanotubes: a density functional theory study.
    Barone V; Heyd J; Scuseria GE
    J Chem Phys; 2004 Apr; 120(15):7169-73. PubMed ID: 15267624
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure-assigned optical spectra of single-walled carbon nanotubes.
    Bachilo SM; Strano MS; Kittrell C; Hauge RH; Smalley RE; Weisman RB
    Science; 2002 Dec; 298(5602):2361-6. PubMed ID: 12459549
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assessment of chemically separated carbon nanotubes for nanoelectronics.
    Zhang L; Zaric S; Tu X; Wang X; Zhao W; Dai H
    J Am Chem Soc; 2008 Feb; 130(8):2686-91. PubMed ID: 18251484
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optical characterizations and electronic devices of nearly pure (10,5) single-walled carbon nanotubes.
    Zhang L; Tu X; Welsher K; Wang X; Zheng M; Dai H
    J Am Chem Soc; 2009 Feb; 131(7):2454-5. PubMed ID: 19193007
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Single-walled carbon nanotube combing during layer-by-layer assembly: from random adsorption to aligned composites.
    Shim BS; Kotov NA
    Langmuir; 2005 Oct; 21(21):9381-5. PubMed ID: 16207007
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Self-assembly and its impact on interfacial charge transfer in carbon nanotube/P3HT solar cells.
    Bernardi M; Giulianini M; Grossman JC
    ACS Nano; 2010 Nov; 4(11):6599-606. PubMed ID: 21028847
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spectroscopic characteristics of differently produced single-walled carbon nanotubes.
    Li Z; Zheng L; Yan W; Pan Z; Wei S
    Chemphyschem; 2009 Sep; 10(13):2296-304. PubMed ID: 19569089
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Growth mechanism of single-walled carbon nanotube from catalytic reaction inside carbon nanotube template.
    Izu Y; Shiomi J; Takagi Y; Okada S; Maruyama S
    ACS Nano; 2010 Aug; 4(8):4769-75. PubMed ID: 20731452
    [TBL] [Abstract][Full Text] [Related]  

  • 53. One-pot synthesis of carbon nanotube-polyaniline-gold nanoparticle and carbon nanotube-gold nanoparticle composites by using aromatic amine chemistry.
    Guo L; Peng Z
    Langmuir; 2008 Aug; 24(16):8971-5. PubMed ID: 18590301
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interactions and reactions of transition metal clusters with the interior of single-walled carbon nanotubes imaged at the atomic scale.
    Zoberbier T; Chamberlain TW; Biskupek J; Kuganathan N; Eyhusen S; Bichoutskaia E; Kaiser U; Khlobystov AN
    J Am Chem Soc; 2012 Feb; 134(6):3073-9. PubMed ID: 22263637
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of the structures of superlong oriented single-walled carbon nanotube arrays by electrodeposition of metal and Raman spectroscopy.
    Huang S; Qian Y; Chen J; Cai Q; Wan L; Wang S; Hu W
    J Am Chem Soc; 2008 Sep; 130(36):11860-1. PubMed ID: 18702491
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Carbon nanotube bundles as molecular assemblies for the detection of polycyclic aromatic hydrocarbons: surface-enhanced resonance Raman spectroscopy and theoretical studies.
    Leyton P; Gómez-Jeria JS; Sanchez-Cortes S; Domingo C; Campos-Vallette M
    J Phys Chem B; 2006 Apr; 110(13):6470-4. PubMed ID: 16570943
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interaction of a transition metal atom with intrinsic defects in single-walled carbon nanotubes.
    Yang SH; Shin WH; Lee JW; Kim SY; Woo SI; Kang JK
    J Phys Chem B; 2006 Jul; 110(28):13941-6. PubMed ID: 16836345
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Direct observation of Tomonaga-Luttinger-liquid state in carbon nanotubes at low temperatures.
    Ishii H; Kataura H; Shiozawa H; Yoshioka H; Otsubo H; Takayama Y; Miyahara T; Suzuki S; Achiba Y; Nakatake M; Narimura T; Higashiguchi M; Shimada K; Namatame H; Taniguchi M
    Nature; 2003 Dec; 426(6966):540-4. PubMed ID: 14654836
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions.
    Yao Y; Li Q; Zhang J; Liu R; Jiao L; Zhu YT; Liu Z
    Nat Mater; 2007 Apr; 6(4):283-6. PubMed ID: 17369833
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Theoretical study of the electronic properties of narrow single-walled carbon nanotubes: beyond the local density approximation.
    Barone V; Scuseria GE
    J Chem Phys; 2004 Dec; 121(21):10376-9. PubMed ID: 15549916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.