BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 17059589)

  • 1. SVRMHC prediction server for MHC-binding peptides.
    Wan J; Liu W; Xu Q; Ren Y; Flower DR; Li T
    BMC Bioinformatics; 2006 Oct; 7():463. PubMed ID: 17059589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative prediction of mouse class I MHC peptide binding affinity using support vector machine regression (SVR) models.
    Liu W; Meng X; Xu Q; Flower DR; Li T
    BMC Bioinformatics; 2006 Mar; 7():182. PubMed ID: 16579851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico prediction of peptide-MHC binding affinity using SVRMHC.
    Liu W; Wan J; Meng X; Flower DR; Li T
    Methods Mol Biol; 2007; 409():283-91. PubMed ID: 18450008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method.
    Nielsen M; Lundegaard C; Lund O
    BMC Bioinformatics; 2007 Jul; 8():238. PubMed ID: 17608956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MHCPred: bringing a quantitative dimension to the online prediction of MHC binding.
    Guan P; Doytchinova IA; Zygouri C; Flower DR
    Appl Bioinformatics; 2003; 2(1):63-6. PubMed ID: 15130834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Major histocompatibility complex linked databases and prediction tools for designing vaccines.
    Singh SP; Mishra BN
    Hum Immunol; 2016 Mar; 77(3):295-306. PubMed ID: 26585361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. T-cell epitope prediction: rescaling can mask biological variation between MHC molecules.
    MacNamara A; Kadolsky U; Bangham CR; Asquith B
    PLoS Comput Biol; 2009 Mar; 5(3):e1000327. PubMed ID: 19300484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties.
    Tung CW; Ho SY
    Bioinformatics; 2007 Apr; 23(8):942-9. PubMed ID: 17384427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico analysis of MHC-I restricted epitopes of Chikungunya virus proteins: Implication in understanding anti-CHIKV CD8(+) T cell response and advancement of epitope based immunotherapy for CHIKV infection.
    Pratheek BM; Suryawanshi AR; Chattopadhyay S; Chattopadhyay S
    Infect Genet Evol; 2015 Apr; 31():118-26. PubMed ID: 25643869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning MHC I--peptide binding.
    Jojic N; Reyes-Gomez M; Heckerman D; Kadie C; Schueler-Furman O
    Bioinformatics; 2006 Jul; 22(14):e227-35. PubMed ID: 16873476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MHCPred 2.0: an updated quantitative T-cell epitope prediction server.
    Guan P; Hattotuwagama CK; Doytchinova IA; Flower DR
    Appl Bioinformatics; 2006; 5(1):55-61. PubMed ID: 16539539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved methods for predicting peptide binding affinity to MHC class II molecules.
    Jensen KK; Andreatta M; Marcatili P; Buus S; Greenbaum JA; Yan Z; Sette A; Peters B; Nielsen M
    Immunology; 2018 Jul; 154(3):394-406. PubMed ID: 29315598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward the atomistic simulation of T cell epitopes automated construction of MHC: peptide structures for free energy calculations.
    Todman SJ; Halling-Brown MD; Davies MN; Flower DR; Kayikci M; Moss DS
    J Mol Graph Model; 2008 Feb; 26(6):957-61. PubMed ID: 17766153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ProPred1: prediction of promiscuous MHC Class-I binding sites.
    Singh H; Raghava GP
    Bioinformatics; 2003 May; 19(8):1009-14. PubMed ID: 12761064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Peptide Binding Prediction Approach for HLA-DR Molecule Based on Sequence and Structural Information.
    Li Z; Zhao Y; Pan G; Tang J; Guo F
    Biomed Res Int; 2016; 2016():3832176. PubMed ID: 27340658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach.
    Wang P; Sidney J; Dow C; Mothé B; Sette A; Peters B
    PLoS Comput Biol; 2008 Apr; 4(4):e1000048. PubMed ID: 18389056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DynaPred: a structure and sequence based method for the prediction of MHC class I binding peptide sequences and conformations.
    Antes I; Siu SW; Lengauer T
    Bioinformatics; 2006 Jul; 22(14):e16-24. PubMed ID: 16873467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods and protocols for prediction of immunogenic epitopes.
    Tong JC; Tan TW; Ranganathan S
    Brief Bioinform; 2007 Mar; 8(2):96-108. PubMed ID: 17077136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach.
    Nielsen M; Lundegaard C; Worning P; Hvid CS; Lamberth K; Buus S; Brunak S; Lund O
    Bioinformatics; 2004 Jun; 20(9):1388-97. PubMed ID: 14962912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.