These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 17059589)

  • 1. SVRMHC prediction server for MHC-binding peptides.
    Wan J; Liu W; Xu Q; Ren Y; Flower DR; Li T
    BMC Bioinformatics; 2006 Oct; 7():463. PubMed ID: 17059589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative prediction of mouse class I MHC peptide binding affinity using support vector machine regression (SVR) models.
    Liu W; Meng X; Xu Q; Flower DR; Li T
    BMC Bioinformatics; 2006 Mar; 7():182. PubMed ID: 16579851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico prediction of peptide-MHC binding affinity using SVRMHC.
    Liu W; Wan J; Meng X; Flower DR; Li T
    Methods Mol Biol; 2007; 409():283-91. PubMed ID: 18450008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method.
    Nielsen M; Lundegaard C; Lund O
    BMC Bioinformatics; 2007 Jul; 8():238. PubMed ID: 17608956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MHCPred: bringing a quantitative dimension to the online prediction of MHC binding.
    Guan P; Doytchinova IA; Zygouri C; Flower DR
    Appl Bioinformatics; 2003; 2(1):63-6. PubMed ID: 15130834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Major histocompatibility complex linked databases and prediction tools for designing vaccines.
    Singh SP; Mishra BN
    Hum Immunol; 2016 Mar; 77(3):295-306. PubMed ID: 26585361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. T-cell epitope prediction: rescaling can mask biological variation between MHC molecules.
    MacNamara A; Kadolsky U; Bangham CR; Asquith B
    PLoS Comput Biol; 2009 Mar; 5(3):e1000327. PubMed ID: 19300484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties.
    Tung CW; Ho SY
    Bioinformatics; 2007 Apr; 23(8):942-9. PubMed ID: 17384427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico analysis of MHC-I restricted epitopes of Chikungunya virus proteins: Implication in understanding anti-CHIKV CD8(+) T cell response and advancement of epitope based immunotherapy for CHIKV infection.
    Pratheek BM; Suryawanshi AR; Chattopadhyay S; Chattopadhyay S
    Infect Genet Evol; 2015 Apr; 31():118-26. PubMed ID: 25643869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning MHC I--peptide binding.
    Jojic N; Reyes-Gomez M; Heckerman D; Kadie C; Schueler-Furman O
    Bioinformatics; 2006 Jul; 22(14):e227-35. PubMed ID: 16873476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MHCPred 2.0: an updated quantitative T-cell epitope prediction server.
    Guan P; Hattotuwagama CK; Doytchinova IA; Flower DR
    Appl Bioinformatics; 2006; 5(1):55-61. PubMed ID: 16539539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved methods for predicting peptide binding affinity to MHC class II molecules.
    Jensen KK; Andreatta M; Marcatili P; Buus S; Greenbaum JA; Yan Z; Sette A; Peters B; Nielsen M
    Immunology; 2018 Jul; 154(3):394-406. PubMed ID: 29315598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward the atomistic simulation of T cell epitopes automated construction of MHC: peptide structures for free energy calculations.
    Todman SJ; Halling-Brown MD; Davies MN; Flower DR; Kayikci M; Moss DS
    J Mol Graph Model; 2008 Feb; 26(6):957-61. PubMed ID: 17766153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ProPred1: prediction of promiscuous MHC Class-I binding sites.
    Singh H; Raghava GP
    Bioinformatics; 2003 May; 19(8):1009-14. PubMed ID: 12761064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Peptide Binding Prediction Approach for HLA-DR Molecule Based on Sequence and Structural Information.
    Li Z; Zhao Y; Pan G; Tang J; Guo F
    Biomed Res Int; 2016; 2016():3832176. PubMed ID: 27340658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach.
    Wang P; Sidney J; Dow C; Mothé B; Sette A; Peters B
    PLoS Comput Biol; 2008 Apr; 4(4):e1000048. PubMed ID: 18389056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DynaPred: a structure and sequence based method for the prediction of MHC class I binding peptide sequences and conformations.
    Antes I; Siu SW; Lengauer T
    Bioinformatics; 2006 Jul; 22(14):e16-24. PubMed ID: 16873467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods and protocols for prediction of immunogenic epitopes.
    Tong JC; Tan TW; Ranganathan S
    Brief Bioinform; 2007 Mar; 8(2):96-108. PubMed ID: 17077136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach.
    Nielsen M; Lundegaard C; Worning P; Hvid CS; Lamberth K; Buus S; Brunak S; Lund O
    Bioinformatics; 2004 Jun; 20(9):1388-97. PubMed ID: 14962912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.