These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 17059615)

  • 1. Approaches to the evaluation of outbreak detection methods.
    Watkins RE; Eagleson S; Hall RG; Dailey L; Plant AJ
    BMC Public Health; 2006 Oct; 6():263. PubMed ID: 17059615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CASE: a framework for computer supported outbreak detection.
    Cakici B; Hebing K; Grünewald M; Saretok P; Hulth A
    BMC Med Inform Decis Mak; 2010 Mar; 10():14. PubMed ID: 20226035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using hierarchical mixture of experts model for fusion of outbreak detection methods.
    Jafarpour N; Precup D; Izadi M; Buckeridge D
    AMIA Annu Symp Proc; 2013; 2013():663-9. PubMed ID: 24551367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An epidemiological network model for disease outbreak detection.
    Reis BY; Kohane IS; Mandl KD
    PLoS Med; 2007 Jun; 4(6):e210. PubMed ID: 17593895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing early outbreak detection algorithms based on their optimized parameter values.
    Wang X; Zeng D; Seale H; Li S; Cheng H; Luan R; He X; Pang X; Dou X; Wang Q
    J Biomed Inform; 2010 Feb; 43(1):97-103. PubMed ID: 19683069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards bioinformatics assisted infectious disease control.
    Sintchenko V; Gallego B; Chung G; Coiera E
    BMC Bioinformatics; 2009 Feb; 10 Suppl 2(Suppl 2):S10. PubMed ID: 19208185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding detection performance in public health surveillance: modeling aberrancy-detection algorithms.
    Buckeridge DL; Okhmatovskaia A; Tu S; O'Connor M; Nyulas C; Musen MA
    J Am Med Inform Assoc; 2008; 15(6):760-9. PubMed ID: 18755992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early warning for healthcare acquired infections in neonatal care units in a low-resource setting using routinely collected hospital data: The experience from Haiti, 2014-2018.
    Lenglet A; Contigiani O; Ariti C; Evens E; Charles K; Casimir CF; Senat Delva R; Badjo C; Roggeveen H; Pawulska B; Clezy K; McRae M; Wertheim H; Hopman J
    PLoS One; 2022; 17(6):e0269385. PubMed ID: 35737713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated detection of hospital outbreaks: A systematic review of methods.
    Leclère B; Buckeridge DL; Boëlle PY; Astagneau P; Lepelletier D
    PLoS One; 2017; 12(4):e0176438. PubMed ID: 28441422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysing trends and forecasting malaria epidemics in Madagascar using a sentinel surveillance network: a web-based application.
    Girond F; Randrianasolo L; Randriamampionona L; Rakotomanana F; Randrianarivelojosia M; Ratsitorahina M; Brou TY; Herbreteau V; Mangeas M; Zigiumugabe S; Hedje J; Rogier C; Piola P
    Malar J; 2017 Feb; 16(1):72. PubMed ID: 28193215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methodological challenges to multivariate syndromic surveillance: a case study using Swiss animal health data.
    Vial F; Wei W; Held L
    BMC Vet Res; 2016 Dec; 12(1):288. PubMed ID: 27998276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Outbreak definition by change point analysis: a tool for public health decision?
    Texier G; Farouh M; Pellegrin L; Jackson ML; Meynard JB; Deparis X; Chaudet H
    BMC Med Inform Decis Mak; 2016 Mar; 16():33. PubMed ID: 26968948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation-Based Evaluation of the Performances of an Algorithm for Detecting Abnormal Disease-Related Features in Cattle Mortality Records.
    Perrin JB; Durand B; Gay E; Ducrot C; Hendrikx P; Calavas D; Hénaux V
    PLoS One; 2015; 10(11):e0141273. PubMed ID: 26536596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Bayesian Outbreak Detection Method for Influenza-Like Illness.
    García YE; Christen JA; Capistrán MA
    Biomed Res Int; 2015; 2015():751738. PubMed ID: 26425552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using an adjusted Serfling regression model to improve the early warning at the arrival of peak timing of influenza in Beijing.
    Wang X; Wu S; MacIntyre CR; Zhang H; Shi W; Peng X; Duan W; Yang P; Zhang Y; Wang Q
    PLoS One; 2015; 10(3):e0119923. PubMed ID: 25756205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a novel grey self-memory coupling model to forecast the incidence rates of two notifiable diseases in China: dysentery and gonorrhea.
    Guo X; Liu S; Wu L; Tang L
    PLoS One; 2014; 9(12):e115664. PubMed ID: 25546054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The application of the grey disaster model to forecast epidemic peaks of typhoid and paratyphoid fever in China.
    Shen X; Ou L; Chen X; Zhang X; Tan X
    PLoS One; 2013; 8(4):e60601. PubMed ID: 23565260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysing spatio-temporal clustering of meningococcal meningitis outbreaks in Niger reveals opportunities for improved disease control.
    Paireau J; Girond F; Collard JM; Maïnassara HB; Jusot JF
    PLoS Negl Trop Dis; 2012; 6(3):e1577. PubMed ID: 22448297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adjusting outbreak detection algorithms for surveillance during epidemic and non-epidemic periods.
    Li Z; Lai S; Buckeridge DL; Zhang H; Lan Y; Yang W
    J Am Med Inform Assoc; 2012 Jun; 19(e1):e51-3. PubMed ID: 21836157
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.