BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 17059828)

  • 1. Structural and biochemical analysis of the Rv0805 cyclic nucleotide phosphodiesterase from Mycobacterium tuberculosis.
    Shenoy AR; Capuder M; Draskovic P; Lamba D; Visweswariah SS; Podobnik M
    J Mol Biol; 2007 Jan; 365(1):211-25. PubMed ID: 17059828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Rv0805 gene from Mycobacterium tuberculosis encodes a 3',5'-cyclic nucleotide phosphodiesterase: biochemical and mutational analysis.
    Shenoy AR; Sreenath N; Podobnik M; Kovacevic M; Visweswariah SS
    Biochemistry; 2005 Dec; 44(48):15695-704. PubMed ID: 16313172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revisiting bacterial cyclic nucleotide phosphodiesterases: cyclic AMP hydrolysis and beyond.
    Matange N
    FEMS Microbiol Lett; 2015 Nov; 362(22):. PubMed ID: 26424768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mycobacterial cyclic AMP phosphodiesterase that moonlights as a modifier of cell wall permeability.
    Podobnik M; Tyagi R; Matange N; Dermol U; Gupta AK; Mattoo R; Seshadri K; Visweswariah SS
    J Biol Chem; 2009 Nov; 284(47):32846-57. PubMed ID: 19801656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of overlapping but distinct cAMP and cGMP interaction sites with cyclic nucleotide phosphodiesterase 3A by site-directed mutagenesis and molecular modeling based on crystalline PDE4B.
    Zhang W; Ke H; Tretiakova AP; Jameson B; Colman RW
    Protein Sci; 2001 Aug; 10(8):1481-9. PubMed ID: 11468344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mycobacterial phosphodiesterase Rv0805 is a virulence determinant and its cyclic nucleotide hydrolytic activity is required for propionate detoxification.
    McDowell JR; Bai G; Lasek-Nesselquist E; Eisele LE; Wu Y; Hurteau G; Johnson R; Bai Y; Chen Y; Chan J; McDonough KA
    Mol Microbiol; 2023 Apr; 119(4):401-422. PubMed ID: 36760076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A phosphate-binding histidine of binuclear metallophosphodiesterase enzymes is a determinant of 2',3'-cyclic nucleotide phosphodiesterase activity.
    Keppetipola N; Shuman S
    J Biol Chem; 2008 Nov; 283(45):30942-9. PubMed ID: 18757371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and Biochemical Insight into the Mechanism of Rv2837c from Mycobacterium tuberculosis as a c-di-NMP Phosphodiesterase.
    He Q; Wang F; Liu S; Zhu D; Cong H; Gao F; Li B; Wang H; Lin Z; Liao J; Gu L
    J Biol Chem; 2016 Feb; 291(7):3668-81. PubMed ID: 26668313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystal structure of AMP-bound PDE4 suggests a mechanism for phosphodiesterase catalysis.
    Huai Q; Colicelli J; Ke H
    Biochemistry; 2003 Nov; 42(45):13220-6. PubMed ID: 14609333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The two GAF domains in phosphodiesterase 2A have distinct roles in dimerization and in cGMP binding.
    Martinez SE; Wu AY; Glavas NA; Tang XB; Turley S; Hol WG; Beavo JA
    Proc Natl Acad Sci U S A; 2002 Oct; 99(20):13260-5. PubMed ID: 12271124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of substrate specificity determinants in human cAMP-specific phosphodiesterase 4A by single-point mutagenesis.
    Richter W; Unciuleac L; Hermsdorf T; Kronbach T; Dettmer D
    Cell Signal; 2001 Mar; 13(3):159-67. PubMed ID: 11282454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases.
    Zhang KY; Card GL; Suzuki Y; Artis DR; Fong D; Gillette S; Hsieh D; Neiman J; West BL; Zhang C; Milburn MV; Kim SH; Schlessinger J; Bollag G
    Mol Cell; 2004 Jul; 15(2):279-86. PubMed ID: 15260978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of phosphodiesterase 9 shows orientation variation of inhibitor 3-isobutyl-1-methylxanthine binding.
    Huai Q; Wang H; Zhang W; Colman RW; Robinson H; Ke H
    Proc Natl Acad Sci U S A; 2004 Jun; 101(26):9624-9. PubMed ID: 15210993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a novel cAMP-binding, cAMP-specific cyclic nucleotide phosphodiesterase (TcrPDEB1) from Trypanosoma cruzi.
    Díaz-Benjumea R; Laxman S; Hinds TR; Beavo JA; Rascón A
    Biochem J; 2006 Oct; 399(2):305-14. PubMed ID: 16776650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of phosphodiesterase 4D and inhibitor complex(1).
    Lee ME; Markowitz J; Lee JO; Lee H
    FEBS Lett; 2002 Oct; 530(1-3):53-8. PubMed ID: 12387865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of inhibitor binding sites of the cAMP-specific phosphodiesterase 4.
    Richter W; Unciuleac L; Hermsdorf T; Kronbach T; Dettmer D
    Cell Signal; 2001 Apr; 13(4):287-97. PubMed ID: 11306246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active site coupling in PDE:PKA complexes promotes resetting of mammalian cAMP signaling.
    Krishnamurthy S; Moorthy BS; Xin Xiang L; Xin Shan L; Bharatham K; Tulsian NK; Mihalek I; Anand GS
    Biophys J; 2014 Sep; 107(6):1426-40. PubMed ID: 25229150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partial characterization of the active site human platelet cAMP phosphodiesterase, PDE3A, by site-directed mutagenesis.
    Cheung PP; Yu L; Zhang H; Colman RW
    Arch Biochem Biophys; 1998 Dec; 360(1):99-104. PubMed ID: 9826434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The non-catalytic "cap domain" of a mycobacterial metallophosphoesterase regulates its expression and localization in the cell.
    Matange N; Podobnik M; Visweswariah SS
    J Biol Chem; 2014 Aug; 289(32):22470-81. PubMed ID: 24970891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implications of PDE4 structure on inhibitor selectivity across PDE families.
    Ke H
    Int J Impot Res; 2004 Jun; 16 Suppl 1():S24-7. PubMed ID: 15224132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.