These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
374 related articles for article (PubMed ID: 17059846)
1. The evolution of the centrifugal visual system of vertebrates. A cladistic analysis and new hypotheses. Repérant J; Médina M; Ward R; Miceli D; Kenigfest NB; Rio JP; Vesselkin NP Brain Res Rev; 2007 Jan; 53(1):161-97. PubMed ID: 17059846 [TBL] [Abstract][Full Text] [Related]
2. The centrifugal visual system of vertebrates: a comparative analysis of its functional anatomical organization. Repérant J; Ward R; Miceli D; Rio JP; Médina M; Kenigfest NB; Vesselkin NP Brain Res Rev; 2006 Aug; 52(1):1-57. PubMed ID: 16469387 [TBL] [Abstract][Full Text] [Related]
3. The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function. Giolli RA; Blanks RH; Lui F Prog Brain Res; 2006; 151():407-40. PubMed ID: 16221596 [TBL] [Abstract][Full Text] [Related]
4. Identification of neurons with acetylcholinesterase and NADPH-diaphorase activities in the centrifugal visual system of the chick. Gardino PF; Schmal AR; Calaza Kda C J Chem Neuroanat; 2004 Jul; 27(4):267-73. PubMed ID: 15261333 [TBL] [Abstract][Full Text] [Related]
5. Presumptive FMRF-amide-like immunoreactive retinopetal fibres in Crocodylus niloticus. Médina M; Repérant J; Ward R; Miceli D Brain Res; 2004 Oct; 1025(1-2):231-6. PubMed ID: 15464765 [TBL] [Abstract][Full Text] [Related]
6. Developmental genetic evidence for a monophyletic origin of the bilaterian brain. Reichert H; Simeone A Philos Trans R Soc Lond B Biol Sci; 2001 Oct; 356(1414):1533-44. PubMed ID: 11604121 [TBL] [Abstract][Full Text] [Related]
7. Centrifugal visual system of Crocodylus niloticus: a hodological, histochemical, and immunocytochemical study. Médina M; Repérant J; Ward R; Miceli D J Comp Neurol; 2004 Jan; 468(1):65-85. PubMed ID: 14648691 [TBL] [Abstract][Full Text] [Related]
8. Energy limitation as a selective pressure on the evolution of sensory systems. Niven JE; Laughlin SB J Exp Biol; 2008 Jun; 211(Pt 11):1792-804. PubMed ID: 18490395 [TBL] [Abstract][Full Text] [Related]
9. The visual system of a palaeognathous bird: visual field, retinal topography and retino-central connections in the Chilean tinamou (Nothoprocta perdicaria). Krabichler Q; Vega-Zuniga T; Morales C; Luksch H; Marín GJ J Comp Neurol; 2015 Feb; 523(2):226-50. PubMed ID: 25224833 [TBL] [Abstract][Full Text] [Related]
10. Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development. Donoghue PC; Sansom IJ; Downs JP J Exp Zool B Mol Dev Evol; 2006 May; 306(3):278-94. PubMed ID: 16555304 [TBL] [Abstract][Full Text] [Related]
11. [Autoradiographic analysis of retinal projections in the flatfish Scophthalmus maximus L]. Médina M; Repérant J; Rio JP C R Acad Sci III; 1987; 305(15):587-90. PubMed ID: 2448015 [TBL] [Abstract][Full Text] [Related]
12. [The brain of the Agnatha]. Kusunoki T; Amemiya F Kaibogaku Zasshi; 1995 Oct; 70(5):436-47. PubMed ID: 8686418 [TBL] [Abstract][Full Text] [Related]
13. Centrifugal pathways to the retina: influence of the optic tectum. Uchiyama H Vis Neurosci; 1989 Sep; 3(3):183-206. PubMed ID: 2487102 [TBL] [Abstract][Full Text] [Related]
14. Evolutionary convergence of higher brain centers spanning the protostome-deuterostome boundary. Farris SM Brain Behav Evol; 2008; 72(2):106-22. PubMed ID: 18836257 [TBL] [Abstract][Full Text] [Related]
15. [Corticalization of 2 regions of the visual system in the evolution of vertebrates]. Karamian AI; Zagorul'ko TM; Belekhova MG; Veselkin NP; Kosareva AA Neirofiziologiia; 1975; 7(1):12-20. PubMed ID: 1082105 [TBL] [Abstract][Full Text] [Related]
17. Comparative anatomy of the serotoninergic systems. Parent A J Physiol (Paris); 1981; 77(2-3):147-56. PubMed ID: 7288635 [TBL] [Abstract][Full Text] [Related]
18. The centrifugal visual system of a palaeognathous bird, the Chilean Tinamou (Nothoprocta perdicaria). Krabichler Q; Vega-Zuniga T; Carrasco D; Fernandez M; Gutiérrez-Ibáñez C; Marín G; Luksch H J Comp Neurol; 2017 Aug; 525(11):2514-2534. PubMed ID: 28256705 [TBL] [Abstract][Full Text] [Related]
19. [Morphological adaptations of the eyes of vertebrates: retinal trophism and the response to environmental stimuli]. Puzzolo D Arch Ital Anat Embriol; 1989; 94(4):317-78. PubMed ID: 2701260 [TBL] [Abstract][Full Text] [Related]
20. Evolution and ecology of retinal photoreception in early vertebrates. Collin SP Brain Behav Evol; 2010; 75(3):174-85. PubMed ID: 20733293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]