BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 17060096)

  • 1. Development of physiologically based toxicokinetic models for improving the human indoor exposure assessment to water contaminants: trichloroethylene and trihalomethanes.
    Haddad S; Tardif GC; Tardif R
    J Toxicol Environ Health A; 2006 Dec; 69(23):2095-136. PubMed ID: 17060096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a screening approach to interpret human biomonitoring data on volatile organic compounds: reverse dosimetry on biomonitoring data for trichloroethylene.
    Liao KH; Tan YM; Clewell HJ
    Risk Anal; 2007 Oct; 27(5):1223-36. PubMed ID: 18076492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the impact of the exposure route on the human kinetic adjustment factor.
    Valcke M; Krishnan K
    Regul Toxicol Pharmacol; 2011 Mar; 59(2):258-69. PubMed ID: 20969910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approaches for evaluating the relevance of multiroute exposures in establishing guideline values for drinking water contaminants.
    Krishnan K; Carrier R
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2008; 26(3):300-16. PubMed ID: 18781539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cancer risk assessment from trihalomethanes in drinking water.
    Wang GS; Deng YC; Lin TF
    Sci Total Environ; 2007 Nov; 387(1-3):86-95. PubMed ID: 17727920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and application of a human PBPK model for bromodichloromethane to investigate the impacts of multi-route exposure.
    Kenyon EM; Eklund C; Leavens T; Pegram RA
    J Appl Toxicol; 2016 Sep; 36(9):1095-111. PubMed ID: 26649444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the effects of water usage and co-behavior on inhalation exposures to contaminants volatilized from household water.
    Wilkes CR; Small MJ; Davidson CI; Andelman JB
    J Expo Anal Environ Epidemiol; 1996; 6(4):393-412. PubMed ID: 9087861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extrahepatic metabolism by CYP2E1 in PBPK modeling of lipophilic volatile organic chemicals: impacts on metabolic parameter estimation and prediction of dose metrics.
    Yoon M; Madden MC; Barton HA
    J Toxicol Environ Health A; 2007 Sep; 70(18):1527-41. PubMed ID: 17710613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disposition of bromodichloromethane in humans following oral and dermal exposure.
    Leavens TL; Blount BC; DeMarini DM; Madden MC; Valentine JL; Case MW; Silva LK; Warren SH; Hanley NM; Pegram RA
    Toxicol Sci; 2007 Oct; 99(2):432-45. PubMed ID: 17656487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probabilistic human health risk assessment for quarterly exposure to high chloroform concentrations in drinking-water distribution network of the Province of Quebec, Canada.
    Buteau S; Valcke M
    J Toxicol Environ Health A; 2010; 73(23):1626-44. PubMed ID: 20967676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human health risk and exposure assessment of chromium (VI) in tap water.
    Paustenbach DJ; Finley BL; Mowat FS; Kerger BD
    J Toxicol Environ Health A; 2003 Jul; 66(14):1295-339. PubMed ID: 12851114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trichloroethylene risk assessment: a review and commentary.
    Jollow DJ; Bruckner JV; McMillan DC; Fisher JW; Hoel DG; Mohr LC
    Crit Rev Toxicol; 2009; 39(9):782-97. PubMed ID: 19852561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accounting for the impact of short-term variations in the levels of trihalomethane in drinking water on exposure assessment for epidemiological purposes. Part II: biological aspects.
    Catto C; Charest-Tardif G; Rodriguez M; Tardif R
    J Expo Sci Environ Epidemiol; 2013; 23(1):60-6. PubMed ID: 22968351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A generic, cross-chemical predictive PBTK model with multiple entry routes running as application in MS Excel; design of the model and comparison of predictions with experimental results.
    Jongeneelen FJ; Berge WF
    Ann Occup Hyg; 2011 Oct; 55(8):841-64. PubMed ID: 21998005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of variation in scaling factors on the estimation of internal dose metrics: a case study using bromodichloromethane (BDCM).
    Kenyon EM; Eklund C; Lipscomb JC; Pegram RA
    Toxicol Mech Methods; 2016 Oct; 26(8):620-626. PubMed ID: 27595344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue dosimetry expansion and cross-validation of rat and mouse physiologically based pharmacokinetic models for trichloroethylene.
    Keys DA; Bruckner JV; Muralidhara S; Fisher JW
    Toxicol Sci; 2003 Nov; 76(1):35-50. PubMed ID: 12915716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A feasibility study of cumulative risk assessment methods for drinking water disinfection by-product mixtures.
    Teuschler LK; Rice GE; Wilkes CR; Lipscomb JC; Power FW
    J Toxicol Environ Health A; 2004 Apr 23-May 28; 67(8-10):755-77. PubMed ID: 15192867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancer risk associated with household exposure to chloroform.
    Lévesque B; Ayotte P; Tardif R; Ferron L; Gingras S; Schlouch E; Gingras G; Levallois P; Dewailly E
    J Toxicol Environ Health A; 2002 Apr; 65(7):489-502. PubMed ID: 11939707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-pathway risk assessment of trihalomethanes exposure in Istanbul drinking water supplies.
    Uyak V
    Environ Int; 2006 Jan; 32(1):12-21. PubMed ID: 16154195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multipathway risk assessment of trihalomethane exposure in drinking water of Lebanon.
    Semerjian L; Dennis J
    J Water Health; 2007 Dec; 5(4):511-22. PubMed ID: 17878564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.