These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
420 related articles for article (PubMed ID: 17061170)
21. A mode of action of glucosinolate-derived isothiocyanates: Detoxification depletes glutathione and cysteine levels with ramifications on protein metabolism in Spodoptera littoralis. Jeschke V; Gershenzon J; Vassão DG Insect Biochem Mol Biol; 2016 Apr; 71():37-48. PubMed ID: 26855197 [TBL] [Abstract][Full Text] [Related]
22. NSP-Dependent Simple Nitrile Formation Dominates upon Breakdown of Major Aliphatic Glucosinolates in Roots, Seeds, and Seedlings of Wittstock U; Meier K; Dörr F; Ravindran BM Front Plant Sci; 2016; 7():1821. PubMed ID: 27990154 [TBL] [Abstract][Full Text] [Related]
23. DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Skirycz A; Reichelt M; Burow M; Birkemeyer C; Rolcik J; Kopka J; Zanor MI; Gershenzon J; Strnad M; Szopa J; Mueller-Roeber B; Witt I Plant J; 2006 Jul; 47(1):10-24. PubMed ID: 16740150 [TBL] [Abstract][Full Text] [Related]
24. Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Mewis I; Tokuhisa JG; Schultz JC; Appel HM; Ulrichs C; Gershenzon J Phytochemistry; 2006 Nov; 67(22):2450-62. PubMed ID: 17049571 [TBL] [Abstract][Full Text] [Related]
25. Variability of aliphatic glucosinolates in Arabidopsis and their influence on insect resistance. Rohr F; Ulrichs C; Mucha-Pelzer T; Mewis I Commun Agric Appl Biol Sci; 2006; 71(2 Pt B):507-15. PubMed ID: 17385519 [TBL] [Abstract][Full Text] [Related]
26. Successful herbivore attack due to metabolic diversion of a plant chemical defense. Wittstock U; Agerbirk N; Stauber EJ; Olsen CE; Hippler M; Mitchell-Olds T; Gershenzon J; Vogel H Proc Natl Acad Sci U S A; 2004 Apr; 101(14):4859-64. PubMed ID: 15051878 [TBL] [Abstract][Full Text] [Related]
27. Tipping the scales--specifier proteins in glucosinolate hydrolysis. Wittstock U; Burow M IUBMB Life; 2007 Dec; 59(12):744-51. PubMed ID: 18085474 [TBL] [Abstract][Full Text] [Related]
28. The Role of the Glucosinolate-Myrosinase System in Mediating Greater Resistance of Barbarea verna than B. vulgaris to Mamestra brassicae Larvae. Müller C; Schulz M; Pagnotta E; Ugolini L; Yang T; Matthes A; Lazzeri L; Agerbirk N J Chem Ecol; 2018 Dec; 44(12):1190-1205. PubMed ID: 30218254 [TBL] [Abstract][Full Text] [Related]
29. Glucosinolate Desulfation by the Phloem-Feeding Insect Bemisia tabaci. Malka O; Shekhov A; Reichelt M; Gershenzon J; Vassão DG; Morin S J Chem Ecol; 2016 Mar; 42(3):230-5. PubMed ID: 26961756 [TBL] [Abstract][Full Text] [Related]
30. Iron is a centrally bound cofactor of specifier proteins involved in glucosinolate breakdown. Backenköhler A; Eisenschmidt D; Schneegans N; Strieker M; Brandt W; Wittstock U PLoS One; 2018; 13(11):e0205755. PubMed ID: 30395611 [TBL] [Abstract][Full Text] [Related]
31. Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. Stotz HU; Sawada Y; Shimada Y; Hirai MY; Sasaki E; Krischke M; Brown PD; Saito K; Kamiya Y Plant J; 2011 Jul; 67(1):81-93. PubMed ID: 21418358 [TBL] [Abstract][Full Text] [Related]
32. Trade-off between constitutive and inducible resistance against herbivores is only partially explained by gene expression and glucosinolate production. Rasmann S; Chassin E; Bilat J; Glauser G; Reymond P J Exp Bot; 2015 May; 66(9):2527-34. PubMed ID: 25716695 [TBL] [Abstract][Full Text] [Related]
33. Differences in the enzymatic hydrolysis of glucosinolates increase the defense metabolite diversity in 19 Arabidopsis thaliana accessions. Hanschen FS; Pfitzmann M; Witzel K; Stützel H; Schreiner M; Zrenner R Plant Physiol Biochem; 2018 Mar; 124():126-135. PubMed ID: 29366972 [TBL] [Abstract][Full Text] [Related]
34. Metabolic engineering of valine- and isoleucine-derived glucosinolates in Arabidopsis expressing CYP79D2 from Cassava. Mikkelsen MD; Halkier BA Plant Physiol; 2003 Feb; 131(2):773-9. PubMed ID: 12586901 [TBL] [Abstract][Full Text] [Related]
35. PYK10 myrosinase reveals a functional coordination between endoplasmic reticulum bodies and glucosinolates in Arabidopsis thaliana. Nakano RT; Piślewska-Bednarek M; Yamada K; Edger PP; Miyahara M; Kondo M; Böttcher C; Mori M; Nishimura M; Schulze-Lefert P; Hara-Nishimura I; Bednarek P Plant J; 2017 Jan; 89(2):204-220. PubMed ID: 27612205 [TBL] [Abstract][Full Text] [Related]
36. Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana. Kliebenstein D; Pedersen D; Barker B; Mitchell-Olds T Genetics; 2002 May; 161(1):325-32. PubMed ID: 12019246 [TBL] [Abstract][Full Text] [Related]
37. Genotype, age, tissue, and environment regulate the structural outcome of glucosinolate activation. Wentzell AM; Kliebenstein DJ Plant Physiol; 2008 May; 147(1):415-28. PubMed ID: 18359845 [TBL] [Abstract][Full Text] [Related]
38. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds. Williams DJ; Critchley C; Pun S; Chaliha M; O'Hare TJ Phytochemistry; 2009; 70(11-12):1401-9. PubMed ID: 19747700 [TBL] [Abstract][Full Text] [Related]
39. Characterization of transgenic Arabidopsis thaliana with metabolically engineered high levels of p-hydroxybenzylglucosinolate. Petersen BL; Andréasson E; Bak S; Agerbirk N; Halkier BA Planta; 2001 Mar; 212(4):612-8. PubMed ID: 11525519 [TBL] [Abstract][Full Text] [Related]